
Windows and Events
created originally by Brian Bailey

Announcements

• Review next time
• Midterm next Friday

UI Architecture

Operating System

Windowing System

Toolkits

Frameworks

UI Builders and Runtimes

Applications

Windowing System

• Manages windows and their relationships
– window hierarchy

• Manages events and dispatch of events to
individual windows
– an event is a notification of an occurrence

such as mouse click, key press, or timer pop

Windows

• A window is a rectangular area on screen
– enables a user to view output
– enables app to solicit input events from area
– inexpensive to create and manage

• A window has properties
– visibility, size, border, color, and more

• Almost every widget maps to a window
• Windowing system manages the windows

Window Hierarchy

• Windows arranged in a tree (root desktop)
– defines a stacking order of the windows

RootA

B

DC
Root

BA

DC

E

F

F

E

Root

B
E

Window Hierarchy

• Windows arranged in a tree
– defines a stacking order of the windows

A
DC

F

Root
AB

DC

F

E

Root

B
E

Window Hierarchy

• Windows arranged in a tree
– defines a stacking order of the windows
– Point P (black circle) is in a window if it is

contained within its visible area
A

DC

F

Window Exposure

• User brings B forward
– parts of B and E have

become exposed
• Should

– B receive one expose
event and E just one?

– B receive one expose
event and redraw E?

• Managing is difficult!

Root

B
E

A
DC

F

Draw/Redraw Windows

• When window is first displayed
– after being created
– re-displayed after having been minimized

• When window content is updated
– e.g., when the display is manipulated

• When obscuring windows are moved

When is Drawing Actually Done

• Right away?
• After next input event?
• When idle?
• When idle or within time limit?

Window Coordinates

• Use pixels as the coordinates
• Origin is at the upper-left hand corner

– X increases toward the right
– Y increases toward the bottom

• Coordinates always relative to a specific window
A

DC

F

UI Events

• An event is an asynchronous notification
of user action, timer pop, status change

• UI applications are event-driven
– loop of waiting for an event and responding
– contrast to top-down sequential flow

Event Sources

• Physical objects
– Keyboard: key pressed, released, typed
– Mouse: button pressed/released/clicked,

mouse motion, mouse drag …
• Virtual objects

– Window: expose, enter, leave, resize, focus…
– Widget: child added/removed
– Selection: item selected in tree, list control…

Event Structure

• Event type (e.g., mouse press, key press,
exposure, focus change, etc.)

• Window identifier
• (X, Y) position of mouse
• Time of event
• Modifiers (shift, caps lock, etc)
• Much more

Windows and Events

• Windowing system associates events with a
specific window (usually focus window)
– mouse, keyboard, and window events

• Windowing system continuously tracks mouse
and which window contains it
– containing window != the focus window

• Windowing system appends an event onto an
applicationʼs event queue
– uses the application that owns the window
– application retrieves event and handles it

Example Event Flow

• Mouse click generates hardware interrupt
• OS maps interrupt to system handler (a routine

in the windowing system)
• Windowing system

– identifies window associated with event and
application that owns the window

– constructs the event structure
– appends event onto the applicationʼs event queue

• Application
– removes event from event queue
– maps window and event to a registered handler
– invokes that handler

Event-Driven Programming

• Applications respond to events
– no central flow of control
– setup interface, handle events, and clean-up

• Core of the application is the event loop
– wait for event, handle event, repeat
– input handlers must be fast - [50, 500ms]

The Event Loop

While (true) {
 Event event = get_next_event();
 Handler handler = lookup_handler(event);
 handle(event);
}

Note: handlers are indexed in a table by
event type, window, and other detail

Program Structure

• Substantial initialization code
– construct data objects and user interface
– register event handlers
– do any setup processing

• Event loop core
– provided by most toolkits

• Special cases
– Modal dialogs

Java History

• Gosling et al. envisioned merger of
consumer and computing devices
– developed a language to enable development

and be portable across devices
– ahead of its time in a niche market

• Language found a new home on the Web
where it could bring static pages to life

Java Language

• Object-oriented language
– classes, objects, inheritance, polymorphism,

exceptions, interfaces, etc.
– very clean and pure language model

• Applications are cross-platform
– compile code into a “byte code”
– develop a virtual machine for each platform that can

interpret the byte code
• Well-documented and supported

– lots of java books available

AWT and Swing

• AWT is the windowing system
– support basic building blocks from which to

construct higher-level controls for toolkits
• Swing is higher-level toolkit built on AWT

– buttons, sliders, edit boxes, menus, …

AWT and Swing (cont.)

• Java 1 (or most of it) used a peer model
– each widget created in the AWT maps to a widget in the

platform-specific toolkit
– difficult to maintain cross-platform feel because a widget

may behave differently on different platforms
– must write AWT part of the JVM for each platform

• Java 2 uses a pluggable look and feel model
– use a single window and drawing commands
– do everything else in Java
– pluggable look and feel, but performance deficient

Simple Window

import java.awt.*;
import java.awt.event.*;

 public class SimpleWindow extends Frame …{

 public static void main(String args[]) {

 SimpleWindow sw = new SimpleWindow();

 sw.pack();

 sw.show();

 sw.setBounds(225, 250, 640, 480); // place the window

 }

 public SimpleWindow() {

 setTitle("Simple Window");

 …

Where is the Event Loop?

Drawing in the Window

public class SimpleWindow extends Frame … {

 …

 public void paint(Graphics g) {

 super.paint(g);

 g.setColor(new Color(235, 235, 235));

 g.fillRect(0, 380, 150, 100);

 g.setStroke(new BasicStroke(4.0f));

 g.setColor(Color.blue);

 g.drawRect(0, 380, 150, 100);

 g.setColor(Color.black);

 g.drawString("X: " + mousex + " Y: " + mousey, 20, 400);

 g.drawString(eventString, 20, 430);

Expose Events

…

public void paint(Graphics g) {

 …

 Rectangle area = g.getClipBounds();

 System.out.println(area);

 …

 g.drawString(area, 20, 430);
} The clipping rectangle in the

graphics object identifies the
exposed region

Enter/Leave Events

 public class SimpleWindow extends Frame implements MouseListener
{

 public SimpleWindow() {

 …

 addMouseListener(this);

 }

 public void mouseEntered(MouseEvent e) {

 eventString = "mouse entered";

 repaint();

 }

 public void mouseExited(MouseEvent e) {

 eventString = "mouse exited";

 repaint();

 }

 Java uses a publisher/
subscribe event model

Mouse Motion Events

public class SimpleWindow extends Frame implements …
MouseMotionListener {

 private int mousex, mousey;

 …

 public SimpleWindow() {

 …

 addMouseMotionListener(this);

 mousex = mousey = 0;

 }

 public void mouseMoved(MouseEvent e) {

 mousex = e.getX();

 mousey = e.getY();

 repaint(0, 380, 150, 100);

 }

 …

 Retrieve context from
the event object

Higher-level Components

• Construct a simple push button from a window
and low-level events
– demo constructed push button

• Required about 100 lines of code and many
desired features were not implemented
– changing font size, centering text, support for icons,

registering callbacks, etc.
• Lesson: Construct higher-level interaction

components and place them in a toolkit!
– Swing, MFC, Motif, Cocoa, etc..

UI Toolkits

• Programming at the low level is absurd
– hundreds of lines of code to manage a single

button on the screen
– handle expose, enter, leave, click events,

position text for different font metrics, etc.
• Large applications are almost impossible

when programming at this level
• Need higher-level programming

abstractions

Toolkits Provide

• Widgets
– interaction vocabulary

• Geometry management
– widget layout

• Resource management
– defaults, user overrides, internationalization

