Visualizing Conversation

I like the fact that many aspects of emotion during real-time text chat are considered, such as the desire to keep posting in order to remain “visible” in the conversation. It appears that one of the features of chat rooms Chat Circles tries to capture is the presence of lurkers. It does a good job when used with primitive systems, but many chat systems now support displaying idle states of participants. While this provides a method for distinguishing quieter chatters from people who just plain aren’t there, a graphical interface allows for faster interpretation of this kind of data. I don’t know whether Chat Circles implements this in any way, but perhaps something it could do is de-saturate the colors of circles of people who have been away from the computer for some time (with the degree of de-saturation corresponding to the amount of idle time, naturally).

Since newsgroup posts are threaded, I would find the setting of Loom seen in Figure 7 to be most useful. As noted in the article, it provides a good view on the type of community a certain newsgroup is. While it is nice to see the color explained in the mood visualization mode of Loom, having some sort of legend to tell what each of the colors means in the threaded view would have given even more quick information about the group. As far as I could tell, there seemed to be a pretty even distribution of all colors so they might’ve just been used to more easily trace each separate line.

One briefly mentioned conclusion the article states is that the types of data Chat Circles and Loom respectively visualize are quite different. While that may be true for newsgroup data, I feel that data from many casual communities based around web-based bulletin/message board systems would fit the conversation and threading model of chat more closely than that of newsgroup posts. Since these systems (in most cases, websites) are simpler to use for most computer users, the more complex and “proper” threading generally remains confined to newsgroup users. Especially in recent times, I’ve seen an increasing number of message boards, comments, and other systems that support message threading being used as a means to chat, albeit without the real-time interaction from all participants.

Because of the inherent problems of chat systems such as user participation, real-time activity, etc., Loom would be more useful to me as a community analysis tool. Whereas chat behavior may be altered by switching user interfaces to Chat Circles, a newsgroup being viewed via Loom is not modified in any way. In a way, Chat Circles does more than visualize data: it provides an emulation of real-world conversation in a big room full of (groups of) people.
Medium Effects: Turn-Taking and Back Channels

I found the discussion on interruption to be interesting but somewhat incomplete, but I’m guessing it’s because of the age of the analysis. There is no exact date given and I didn’t bother looking it up, but I suspect that the document was written before instant messenger usage exploded in the late 1990s. The article states that people realize the reasons for lack of response from other parties. I’ve noticed that younger people in particular are more prone to feeling ignored rather than interrupted or may deem their conversation with the interrupted party more important than the actual interruption. A funny outcome is that the “normal” reaction doesn’t bring about the same results in a MUD: repeatedly messaging the interrupted person does not bring him/her back any more quickly or get rid of the interruption.

Something else I saw only partially considered was the comparison of median number of words per turn in dyadic conversations between MUD and face-to-face communications. Again I’ll blame the age of the study, but there were probably less people as proficient in typing as there are today. Naturally, fewer words would’ve been typed (as in a text chat) in a smaller time span than could’ve been said (as in a face-to-face conversation). In addition to that, online voice chat is popular with today’s available technology. I’m sure a voice-enabled online conversation would closely match that of a face-to-face. Interruptions may be handled in the same way as in a text conversation, with shouts and demands for the chatter’s return being futile, but otherwise the session would resemble one “in real life” (minus facial expressions, etc. but allowing for multitasking on the computer).

Back channels are more commonly missed in mediums like e-mail because those mimic more formal means of communication and are not as instantaneous as systems like instant messaging, of course. Nobody writes “OK” or “Hmm” in letters, but they may say those in a conversation. With respect to back channels I found the article to simply summarize the obvious. Once again, I would expect the occurrence of back channels to significantly change when analyzing voice chat. Since that most closely imitates face-to-face conversation, they would crop up more, and decrease more and even more when moving to a text-only medium with synchronous dyadic input and to a non-instant text-only medium, respectively.
Managing the Virtual Commons: Cooperation and Conflict in Computer Communities

Immediately after reading section 2, I felt that much of it was too technical in regards to the scope of the article. Having that information is nice, but it’s not supposed to be a focus of the article and so could probably have been omitted or moved to an appendix.

However, I did like the classification of many dilemmas and actions which violate certain cooperative principles conducive to meaningful conversation. Some of these may not matter so much nowadays (e.g., bandwidth), some of these have new names (e.g., grandstanding can be considered spam), and some of these are solutions in themselves (e.g., alt.flaming).

I strongly agree with the argument that the phrase “the larger the group, the less it will further its common interests” does not apply to the Usenet or any other type of virtual community for that matter. In an environment where free-riding is easily identifiable, there may be less violators of the set of cooperation rules because of the larger number of people who can catch them in action. The problem of anonymous free-riding is brought up but not addressed in the article. I have never seen a system feature truly anonymous posting; there is usually some piece of information stored pertaining to the author of the post (such as IP address) even if the publicly displayed name may read “Guest”. If there were no data kept, though, a spammer or random troll could get away with doing a lot of damage without having to deal with any consequences.

It is funny how unchanging the violations of community-made rules and the sanctions by which they are punished are over the years. Although I was not an early user of newsgroups, examples cited in the article can still be unintentionally encountered in many mediums of online communication today. An inappropriate forum post can result in public rebuke or humiliation even outside of the domain of the original group, and the sheer amount of spam that gets through automated filters is still a major problem. An active member of the community will learn from his/her mistake, but a person running automatic spam-posting robots normally does not have to worry about repercussions resulting from such dangers as threats of physical harm which will probably be left unfulfilled for better or for worse.

The presence of age-old violations of general codes of conduct is evidence to me that online social interaction will always maintain some level of constant similarity with its offline counterpart. Usenet communities act like offline establishments without official police forces but are self-governed to the point where their survival is determined solely by numbers of people; success is a different story.