I particularly enjoyed the Reebee Garofalo visualization of the history of music. This drawing was in “Visual Explanations” by Edward Tufte. It details the rise, fall, and variations of different genres of music from the 1950s to 1977. The visualization is depicted on a graph of dollar volume of record sales vs time on the x and y axis. Different bands are shown in their time frame and in their genre. Some bands repeat multiple times based on resurgences and variations in their styles over time, which I found to be one of the more interesting points of the graph.

I liked the fact that you could see the rise and fall of different genres over time. The imagery was reminiscent of striations in layers of earth. I thought that this was applicable to the diversity and variations visible in popular music genres.

I also liked that the width of the genres corresponded to how large their sales were for that year. This created interesting patterns and added more to the visualization. It is much easier to figure out how different genres mutated through time with this imagery than it would be with a list of numbers, or with a chart of plain statistics.

The fact that this visualization only goes for 30 years limits and trivializes some of the complexities of musical variation. However, it is very useful for an analysis of a specific time period. It also brings to light the fact that music is based on previous renditions, and very rarely are there original styles.

Space is limited in a graph, which necessarily means that all bands can't be included. However, this means that most bands are not included. Also, many bands are hard to group into a particular genre. This could distort the sizes of different genre areas, if a popular band is grouped into one category, that genre will be much bigger. This is one area where showing more band names could be useful. If a genre has many band names it is likely a large area of music at that time. One suggestion for how to choose bands is by the number of sales. If you include all bands with over x number of sales you could show a better cross section of available music at any given year.

There were only a few things that I would change. All of them are based on the fact that the graph is a simple black and white line drawing. Sometimes it was hard to follow where the genres went, so a thicker line or one of a contrasting color could be beneficial in following the trends. Also, showing the genres in a different style than simply making them bold would be helpful. Again, a different color could help differentiate the genres from the band names.
Another visualization that I found to be interesting for multiple reasons was the chart on criminal activity of government informants. This chart was supplied by the defendant's counsel in the United States v. Gotti trial.

It is suggested in the text that this chart was a strong influence in the results of the proceeding. As stated in the book, “Visual displays of information encourage a diversity of individual viewer styles and rates of editing, personalizing, reasoning, and understanding.” By simply moving data from a linear form, in either text, or spoken word, they were able to make the information more accessible and understandable.

This chart shows that the informants who were testifying against Gotti were prosecuted for a wide array of crimes. The graph seems predominantly x's (indicating criminal activity), perhaps because the x's are bold and striking in comparison to the text and lines of the chart. Also, strings of x's are grouped together to emphasize the sheer number of convictions the informants had. When you see a string of x's taking up most of a row (like in Polisi's case) it just emphasizes all the x's and shows how much of the graph it takes up.

I agree with the observation in the text that the crimes listed on the top and bottom are the most easily seen and are more memorable. The creators of the visualization placed the most morally repugnant crimes, such as murder, sexual assault on a minor, and pistol whipping a priest, in those locations. It is easier to follow the lines across to see who did these crimes, since they are not grouped so closely with others. The use of small multiples in this example just emphasizes the virulence of crime among the informants.

An addition that I would find fascinating, though I am unsure if it would be beneficial or decremental to the case, is to include Gotti and the list of crimes that he is accused of in the visualization. By differentiating these crimes by color you can keep Gotti removed from the stigma of the others, and compare him to his accusers. You could show that the informants were not free from any of the accusations against Gotti, and in fact included many more.

It is very interesting to see a visualization that is used successfully in law. This just shows how beneficial visualizations are to showing trends and statistics. It is much easier to process a graph or visualization than it is to understand a list of data.
Visualizations are used for many differing purposes, but one that is especially useful to society is predicting health trends. In Edward Tufte's book “The Visual Display of Quantitative Information” there is a map by Dr. John Snow. This map depicts deaths by cholera in September of 1851. This map was used to detect the cause and prevent a disease that caused the death of more than 500 people. It proves the usefulness of visual analysis in a wide variety of fields.

By placing dots in a map for deaths, and placing pertinent landmarks (in this case, the public water pumps) it is easy to spot trends. The map clearly shows that all the deaths seem to be centered around the Broad Street water pump. However, without a more accurate map depicting more landmarks, the actual cause could be something else close to that source. For example, if a bakery sold bad bread on Broad Street, the map could give the wrong impression.

By only giving locations of water pumps it is assumed that one of them is the cause. Therefore, the source of the disease could be inaccurately applied to the water pump, when something other than a water pump could be the cause. However, this error could be extended to lists of data as well. It is something that is not resolved with the visualization, but it is not a new error that is introduced by rendering the information graphically.

I also think that it would be interesting to see where buildings were. This could affect the dispersal of the disease. Another good visualization, if the current one did not provide the results, would be to plot the locations of where people worked who had the disease. If you plotted workplaces in a different color you could more easily see different places where people could have contracted the illness.

It is especially interesting to see techniques of visualization in use in historical times. It goes to show that many ideas that seem modern, have been successfully employed for a long time in order to view and process different types of information.