The graphs on page 48 show the power of small multiples. The page is very visually appealing. A reader’s eyes are immediately drawn to the graphs. Visually, the page looks very clean even though there is a lot of information being provided. Both the uniformity of size and placement of the graphs into a grid inform viewers. This separates the information, and allows it to be easily parsed. Each plot of male unemployment rates to inflation jumps around the given graph. Without the use of color or some other distinguishing characteristic, if the data was plotted on the same graph one would get confused very easily. Small multiples have the benefit of aiding in the speed and accuracy of the information received, but does it at the cost of space.

What I did not like about these charts is that the axes are not uniform across all the graphs. The axes are adjusted, but there is not visual indicator that they graphs are showing anything different. It seems that a major downside of small multiples is that, whereas there is a lot of information for viewers to glean at a glance, it is also easy for the creators to accidentally skew the information as well. Looking at the page gives the illusion of simplicity. There is a lot of open space. Nothing is very busy or hard to read. The information is presented in a way that is familiar to most people. Yet, getting the page to be set up this way is not as easy as pulling out the individual countries graphs from the set of all countries plotted.

Having nine graphs just happens to split very nicely into three rows of three graphs each. What would happen if there were seven countries plotted instead? Seven is prime and does not have any nice way to sort itself. Having an uneven number of rows implies to me that there is an ordering to the graphs. Perhaps they have been ranked in some way, and the first row represents the best while at the bottom represent the worst. Additionally, if the creator of these graphs had wanted to show that the axes of a graph were changed, they could have found some way to turn that into a visual. Maybe a longer x-axis denotes the graph being shown at a slightly larger size, or the axes could be shaded different shades so that all axes from 0-10 were one shade, while all axes from 0-25 were shaded differently. This would still allow readers to get information quickly while preserving the layout of the page.

This page made it very clear how important it is as a designer of a visualization to take care. Yes converting raw data into a form that can be easily understood by people is important, but it is also necessary to consider what else is going on. A good visualization is not just turning information into shapes and images. Making sure that what people actually get from it is what they think they are getting from it is important too. After all, a visualization is not actual data, but a representation of that data that you hope people understand. It would be very easy to take advantage of people, and say that a shape represents some data, when it really does not at all.