This paper begins by describing the uses of email. It is used both professionally and privately. It keeps track of important information, contacts, and conversations. People archive their old email messages and rarely delete outdated emails. The paper mentions that current email clients are inadequate at extracting meaningful information from these archived messages and furthermore they do not facilitate using these messages in their user interface. In order to alleviate the aforementioned problems with email clients, this paper describes four email archive visualizations. Finally, the paper ends by describing a few ideas for improvements on the way people view email archives and it makes predictions about future uses for this information.

The first time-based visualization is called TimeStore. This visualization showed messages sent over time by each user. It unfortunately did not show header names. This is a very important aspect of an email message, and is the primary use for manually finding old messages. I think this visualization would be useful to add to an existing email client, but as a standalone program it does not seem all that useful.

Post-History is another time-based visualizations of emails. It was not entirely clear how this visualization worked. There is a calendar showing how many emails are sent and received on each day and how directed that email is. The paper says that the size of the square representing each day corresponds to the amount of email received/sent. From this description, it sounds like a much distorted calendar would appear. Each day has a randomly sized box. There are no pictures to say for sure, but I believe this view could be very distracting.

The next two visualizations dealt with the social aspects of visualizations. They attempt to map out a user and his/her email contacts. Personal Map, the first of the two visualizations, creates a simple web representing a user and their contacts. It is a simple, yet effective idea. The information is presented concisely and it sounds intuitive to use. The Social Network Fragments visualization is a little bit more ambitious. It attempts to display the groups which form based on a person’s email archives. This system attempts to cluster nodes together on a grid using a spring-based system. I would be curious to know what algorithm they used to visualize this. My own work on a newsgroup community clustering could have benefitted from such a system. I needed to use a k-means clustering algorithm, but from the description by the paper, SNF used a different scheme.

The paper ends with a few ideas about future email developments. Cultivation is a presented idea to make email archives more of a habitat. This idea revolves around improving the existing archive with annotations and organizational features. I believe this is an important step toward maintaining useful information about past interactions, but too much cultivation can also destroy or distort the archival aspect of emails. Presently, an email archive preserves the past without distortion. If too much is done in the way of cultivation, then the archive may lose its use.
This paper describes in-depth the Social Network Fragment program. As described above, this visualization is used to show how different users form communities. It does this by defining relationships between each person based on a user's email archives. From these relationships, each user is placed on a grid such that their closeness to one another is indicative of their relationship to each other. The paper mentions the limitations of their visualization.

SNF has many similarities to the program I did for visualizing newsgroups. The challenges mentioned in this paper are ones that I went through in my program. It is interesting to see the divergence where I chose one solution and the authors of this paper chose another. The biggest difference is in how to handle converting multi-dimensional data into a 2D format. I chose to assign each user to one group and one group only. This allowed my model to be consistent and not misrepresent the data. The authors of this paper chose to place everyone on a grid with no hard-coded groups. They let the nodes align on the grid using a simple iterative method. As mentioned, this idea results in nodes being close to one-another when they should be further apart. The benefit of this tradeoff is the ability to show how close each node is to each cluster. Whereas in my visualization, each node is mapped to one cluster when they may in fact be very near the midpoint between two clusters. I also used a k-means clustering algorithm which required me to specify the number of clusters. Their iterative algorithm does not require a predefined number of clusters, which is a much needed improvement on my visualization. I also required that the similarity matrix between each user be symmetric. I thought of ways to build an asymmetric similarity matrix as they did in the paper, but I could not find a clustering algorithm that would parse it.

I understand why they chose not to do a 3D implementation. Viewing a 3D design in a 2D space has severe limitations. I am confused by the following line from the paper, "the confusion that 3D adds does not outweigh the advantages of an extra graphical dimension". This implies that they felt 3D was a better model, but chose not to implement it. Instead they relied on 2.5D.

I like the idea of drawing lines between nodes which are closely connected. This would have been useful in my visualization to show which users in a community are more attached than others. It would also help to show more about a community's inner workings.

In my visualization, I represented each node as a polygon. SNF represents each user by their name. I felt this cluttered up the screen and made it very difficult to see groups. There is so much overlap in the picture where one name is on top of another. I think using a simple shape is a cleaner layout. There is also less confusion about how many nodes inhabit a location. With the paper's visualization, I could not tell how many people were clumped together because all I saw was a sea of letters overlapping each other.
This paper is a study of online social networking sites. It attempts to explain why these sites exist and why/how people use these sites. One of the main reasons found as to why people use these sites is to convey one's connections. This is likened to name dropping in real life conversations to increase one's social worth. The paper also discusses what information people share on these websites and the impact of this openness.

One benefit mentioned of open social networking sites is the implicit verification of data. When a person lies on a social networking site, their information is broadcast to their online friends. Many of these people are assumed to be real life friends. It is awkward and embarrassing to be caught lying by a friend in real life about something written online. This is supposed to provide an incentive to not lie on social networking sites. I question how much of an effect this has on people. If a person has the personality trait that they must misrepresent themselves online, they may not be inclined to care about the negative social impact this could have on their offline life.

I believe the conclusions about pseudonymous social sites are accurate. The paper claims that people are more likely to misrepresent themselves on these sites than other social sites. I recently read about people creating fake profiles on dating websites in order to con people out of money. These people would find unsuspecting targets and chat them up online. Eventually they would arrange a face-to-face meeting, but would require cash in advance to buy a plane/bus ticket. After the cash is sent, these pariahs would vanish.

I agree that social networking sites do not dramatically increase the number of close social ties a person has. I personally find that I primarily meet with only a single core group of people. The group of people I meet with usually changes depending on my current circumstances. When I am home for break, I mostly spend time talking with my friends back home. When I am at school, I largely just talk to people at school. I find that social networking sites help to preserve these strong ties when I am not actively engaged in them.

The paper mentions “Friendster whores” and then later shows a sample Friendster profile. It is interesting that the profile shown has “Vagina” and “Mary Magdalene” listed as contacts. Both of these contacts are presumably not real contacts. This would indicate that the sample profile is a “Friendster whore” because the user has added friends for the sake of adding friends.

I like the idea of creating a more open culture and I think social networking sites could help this. People are more able to express their unique individuality and are more able to find other people with similar interests. If people are more open, they are bound to become more accepting of others. This would limit the necessity of placing barriers and segregating parts of a person’s online profile.

I like Burning Man.