In her dissertation Karahalios describes a system she names Telemural. Telemural is a system that allowed people in separate dormitories to see abstracted representations of themselves and those on the other side of the mural. A lot of time went into perfecting Telemural. It went through several revisions to make it more approachable, and more privacy conscious. Then it went through several more revisions to reward participation. She found that the Telemural sometimes helped create a connection between people when a connection was not already there. This is the beginning of a successful social catalyst.

Looking at the data in the appendix, it seems that Telemural often had trouble creating lasting connections. Often times, less than a quarter of the people who talked or played with others on the Telemural did so for more than a minute. I don’t think this was necessarily a failure of design, but simply a less than optimal application of the technology. A social catalyst is useful, but its use becomes amplified considerably when it is placed in a successful social space.

Karahalios cites near the beginning of her dissertation William White: “From his observations he concluded that there were seven key features that were necessary for designing a successful public space. These features are: sitable space, street, sun, food, water, trees, and triangulation.” The study took advantage of triangulation, by placing Telemural in places with high foot traffic, but as far as can be told by the dissertation, ignores the rest of the key features of a successful public space. In the pictured application on page 42, one end of the Telemural is placed next to an elevator. It’s therefore not surprising at all that interactions often lasted under a minute, since often times people at elevators have somewhere they need to be.

Even though the Telemural isn’t designed for use while sitting, I think that it could much improve from being set in a space with couches and armchairs. People don’t just “tend to sit where there are places to sit,” they tend to gather where there are places to sit. This would also allow the social catalyst to have more opportunities to do its work. Its success wouldn’t have to rely so much on people *bumping into each other* at the Telemural.
References

Antisocial Networks

Michael Hines
mhines3@illinois.edu
March 17, 2009

The Dunbar number states the number of stable networks that a normal person can maintain. These articles ask whether Facebook is helping increase or decrease this number. I have a feeling that this is not the right question. Although it is a question that I’m sure has an answer, my suspicion is that the number has remained unchanged. We know that even with the advent of telephones, cars, and airplanes that historically this number has stayed constant. I think the real question is, what is Facebook doing for us for those 150 people?

As the Facebook Data Team pointed out, just because the average number of stable relationships that a person can maintain is as high as 150, doesn’t mean that’s the number of people that someone maintains active communication with. That number is as low as 3 or 4. Why then do people become Facebook friends with almost 50 times that number? It’s because Facebook’s power is not in the communication it lets you have with your real friends. It’s the tracking it allows you to maintain with the people you don’t communicate with.

Two often used features I’ve observed used on Facebook are groups and messages. The fact that groups can send messages is a powerful feature. It let’s someone in a group send an impersonal message to all in the group without actually having to maintain personal contact with the people in that group. Also, I often get messages from ‘friends’ that are sent to everyone in their network. Although often times I find this rather annoying, it is a way for me to know at some level what those people are up to. So even though I don’t always communicate with all 150 of my stable network, I can still keep track of them.

I propose that those 150 people are candidates for our closer networks. So Facebook allows us to keep better track of those candidates. Because they’re not part of our closest network, we wouldn’t otherwise be able to know about their current interests and doings. Perhaps Facebook is helping us better prune our friends, even though sometimes it might seem to be doing the opposite.

References

http://www.facebook.com/notes.php?id=8394258414
I think the study for the evolution of language in animals is important. If we can deduce how animals evolved into humans that can understand language, we can better understand the necessary features that allow us alone to understand complex language. This can help immensely in the field of artificial intelligence.

As computers stand right now, they can’t think for themselves. Currently computers only do what we tell them. However, as the field of artificial intelligence progresses, computers will more and more seem to think for themselves. Current computer learning algorithms primarily focus on learning how to parse speech. I’ve yet to see a computer algorithm that can make new sentences from the parts of speech it’s learned to describe something else. Perhaps rudimentary models exist, but knowing how we evolved to reach this capacity might give us insight into how we would create new algorithms for computers in this sense. Computers that can synthesize new speech to describe information would be a huge leap that might usher in a new era of user interface design like we’ve seen in movies for the past fifty some years.

Also, more work needs to be done in helping computers understand what they have parsed out of natural speech. Since this paper alleges that the only difference between animals and people are the recursive understanding of complex grammars that we have, that would mean that we are one step closer to this. Computers already understand recursion by mathematical nature.

On the other hand, I think it will still be some time before we can fully understand the evolution from animals to humans. This includes understanding the evolution of languages. So we are still probably a very long way from building computers that can learn and speak languages for themselves.

References