Article: Artifacts of the Presence Era: Using Information Visualization to Create an Evocative Souvenir
Author: Fernanda B. Viegas, Ethan Perry, Ethan Howe, and Judith Donath

I always feel that when authors have to describe what the contribution of their work is; their work must not be very good. That is what the authors do to begin this paper. They feel the need to outright say what the significance of the work is, as if they are trying to convince themselves that this work is worth noting as well.

Another thing that I do not understand is that the authors state that their interest is in the possibility of documenting how, on an everyday basis, the building was used by its patrons. The authors’ solution to this was to set up a camera and a microphone in a single open space. With this, the authors are not capturing the use of a building; they are capturing the use of a single room. While there is one more space involved, the presentation space, data was not being collected around this area. Basically, I do not understand why the authors chose this route if only one room in the entire museum was documented as part of the visualization.

One major issue I have with this project is the how the sediment layers collect over time. I am not a fan of having the layer below become the new axis by which one adds the next layer to. That is, everything may start from the x-axis. Then the first layer is added to the x-axis (or rather where x = 0). However, now the newest layer becomes the base layer. The next layer is added on from there. My issue with this is that one loses information. A lot of work has to go into deciphering whether a layer is more important or is a layer somewhere below it the important one. From an early age people are taught to read things from the x=0 line. However this piece fights that. While the piece may be more aesthetically pleasing, the piece also ends up losing functionality. I know that the authors state that this is an art piece, but that does not give them the right to make the piece unusable. Byron and Wattenberg also had similar issues with the Streamgraph they created. One of the most difficult parts of that piece was deciding how to layer the elements without confusing people. I feel that they were able to do a better job that the authors in this piece.

According to the public reaction section, the piece was well received. I must say that I am surprised that no one complained about the confusing way the layers were stacked. It does not seem to explain anywhere in this section if users were able to figure out how the layers were being created. It does say that people noticed it took five minutes to capture a scene, but it does not state anything about users figuring out that the louder they were, the larger the layer it would create. I imagine that there would be a few large layers that contained a large amount of people. The collective noise that a group of people could make very well be louder than the sounds from just one or two people. With this in mind, larger layers may be likely to have more people in them. As a user, if I did not know the layers were based on volume levels, I may go into the space and just stand around with a bunch of others, waiting to be captured, expecting that the number of people defines a layer size. Then after five minutes I would probably be surprised that the layer was small.

The related works section seemed very short. I felt like the authors did not even try to look for related works. It might be possible that they were limited by space, however, I cannot think of any journal or conference that caps the length of at 7 pages. Even still there was space for another paragraph at the least. Overall, I thought that this work was ok. I was not overly impressed, but it was not terrible either. I would have been more interested in seeing actual studies being performed, though. I am greatly interested in seeing what the formal reactions of users are.
This paper mentions at the beginning, the idea of creating a feature-length movie in a watercolor or oil painting style. It seems that this paper was published in 1998. The reason I bring this up is because animation and computer graphics have changed a lot in the last ten years. So much so that a video game has come out. The game is called Okami and in this game, the art is rendered in a style that mimics painting. It is one of the most beautiful games I have ever played, and I wonder what Hertzmann would think about this game.

I do not think I understand the point of blurring the image before running the algorithm with the multiple brush sizes on the image. Hertzmann just goes on explaining the brushes and what the brushes will do. It is as if blurring the image does not even matter. If that is the case, why would be bring up the idea of blurring the image. Another question I had is about how they figure out that they painted all the points on the image randomly. If Hertzmann is going through his algorithm, I would be very interested in knowing how he makes sure that every point is covered by a brush point and still do it in a randomly chosen order.

Another thing that I wonder is why they decided to keep the brush strokes a constant color. When painting in real life, colors mix. If one is painting white on a piece of canvas that has black paint, the colors may mix and the artist would get a somewhat grayish stroke. In other cases, the brush may lose some of its paint so the earliest part of the stroke may be more solid and vibrant than the later part of the stroke. Hertzmann however mentions that the stroke color stays constant and the only gradient that is used is to guide the stroke itself. To me, this means no color blending, no loss of amount of paint on the brush. That does not sound at all realistic to me. If Hertzmann is trying to create a system that mimics non-photorealistic renderings, I am already skeptical.

After taking a look at the images used as examples on page four, I am honestly the most impressed with image 2b ad 2c. Those images are what the picture looks like after the image has been rendered with a brush of radius 8 and a brush of radius 4. The next image makes it look too close to the real thing. If they went even further and decided to use a radius of size 1, we may even get an image awfully close to the real thing. 2b and 2c on the other had actually look like paintings.

Hertzmann has seemed to think of a lot of parameters for this system. It seems like he is trying to make the system as robust as possible. I am also impressed that he has different styles already setup in his system. That could allow people to work on various different styles and not even have to think about it, if this system was available to them. In the future works section, Hertzmann mentions real-time processing of video. Seeing as the implementation of the video visualization is coming up soon, I wonder if I could try and implement something similar.

Overall this was an interesting paper. There was a little more math than I was used to, but it is a siggraph paper, so it is to be expected. I think it would be really cool to have this type of algorithm in place. To be able to turn photos into “paintings” could create boring pictures into art pieces. I am excited to try and implement something similar myself.