

CrowdBand: An Automated Crowdsourcing Sound Composition System

Mary Pietrowicz, Danish Chopra, Amin Sadeghi, Puneet Chandra, Brian P. Bailey, and Karrie
Karahalios

Department of Computer Science
University of Illinois

mpietro2@illinois.edu, danishchopra@gmail.com, m.a.ssadeghi@gmail.com, puneetchandra007@gmail.com, bpbailey@illinois.edu, and
kkarahal@illinois.edu

Abstract
CrowdBand, a sound composition system, demonstrates
how a crowd can create works that meet requested criteria
and fulfill the aesthetic character given by keyword
description and examples. CrowdBand allows flexibility in
music composition in terms of duration of the music,
completion time and cost of music composition by giving
the requestor two modes - thrifty and normal. CrowdBand’s
workflow divides the composition task into three sections:
requesting fundamental sounds, assembling sounds into
compositions, and evaluating the results. Based on the
crowd workers’ responses, we conclude that crowdsourced
workers who are non-musicians can design sound and create
novel sound compositions through CrowdBand. We also
conclude that CrowdBand gives the musically-untrained
crowd workers the ability to use common compositional
techniques, such as sound layering, vertical stacking of
sounds to create harmonic effects, related melodic lines
(contrapuntal techniques), and transitions between aesthetic
notions, or sound themes. Finally, we show improved, faster
results with successive simplification and examples.

 Introduction
Music creation has long been the domain of trained
composers. Many kinds of compositional styles and
notation exist, and they range from traditional notated
composition on the musical staff, to completely electronic
compositions which have no score, to popular music
notated in lead sheet format, to electro-acoustic
combinations (partially notated), to improvisational, and
more. Yet, all styles require training and practice in order
to produce coherent pieces. It is also a time-intensive and
costly process for the composer. And, each individual
composer has a personal style that defines the music they
create. This is both enabling and limiting. It is enabling in
that the composer has bounded the problem (he is a certain

Copyright © 2013, Association for the Advancement of Artificial

type of composer, with certain skills, who uses certain
techniques, and tends to write certain kinds of pieces, etc.),
but limiting in that a single person will not explore the
range of what is possible to create. In this paper, we
explore how sound compositions can be created by non-
expert crowds, because they can quickly explore a range of
possibilities and are not limited by the boundaries of any
one individual.
 Our system, “CrowdBand,” assists both musicians and
non-musicians in the creation of electroacoustic sound
compositions. The requestors (system users) specify the
kinds of sounds to use, the structure, length, and character
of the piece. Our system breaks the job down into a
workflow of tiny composition tasks that fulfill the request,
and the workers execute the tasks that the system has
generated. Nonmusicians can use CrowdBand to create, for
example, a “Happy Birthday” piece for a friend, a
signature ringtone, or a sonic work to share on social
media. These requestors and workers (who otherwise
would not have the experience) get a taste of composing.
Musicians, in contrast, can use CrowdBand to explore
styles outside of their typical range, explore sounds, and
introduce an aleatoric (chance) element to their work.
CrowdBand does not replace the trained musician.

Figure 1 shows the requestor interface. First, the
requestor fills in basic information about the piece that
determines the cost, length, and character of the work. In
Step 1, the crowd provides sounds in keeping with the
duration and keyword descriptions. In Step 2, the crowd
assembles the sounds into short pieces. The sounds can be
arranged sequentially, simultaneously, and in multiple,
related sequences. Finally, in Step 3, a crowd or the
requestor select the best result.

CrowdBand’s primary research contributions are 1) the
system design, and 2) the iterative evaluation of the
system. We discuss the system and its evaluation in the
body of the paper below. We also address the following

two research questions to analyze the effectiveness of
crowd-sourced music:

RQ1: Can crowdsourced workers who are non-
musicians design sounds and create musical works?
RQ2: Can crowdsourced, untrained workers create
pieces that use any common compositional techniques
such as sound layering, counterpoint (multiple related
melodies), and transitions between themes?

Figure 1: The CrowdBand Composition Interface.
This interface shows the basic setup and the 3 steps

for crowdsourcing a sound composition.

With CrowdBand, we found that the untrained crowd
could provide sounds, which represented concepts given by
the requestor, apply some techniques that trained musicians
use, assemble the resultant sounds into musical pieces, and
select the best productions from all of the workers. We also
showed that CrowdBand could be used to create a piece
that transitioned from one concept or theme to another,
which is a common compositional construct.

Related Work
This project builds on work from multiple disciplines,
including music composition, computer music, machine
learning, crowdsourcing, and art. Most classical and
popular Western music follows the conventions of
“tonality,” [16] which govern our expectations about how
how music should function and sound. The 20th century
brought alternatives to the tonal system, and composers
created works based on other organizational methods, such
as ordered sequences of pitch classes [28]. Varese
famously redefined music as the “organization of sound”
[31], so that all sounds, not just instruments, could be used;
and Russolo pioneered the use of “noise,” or “found
sounds,” in music [26]. Computer music techniques
evolved along with technology [25]; and today, many

software tools provide computer music support
[2,6,10,18,23,24,29]. Composers and engineers
experimented with machine learning algorithms too,
especially genetic algorithms (GAs), to try to simulate
human works. For example, the Spieldose [27] system
used a GA with an interactive fitness function to make
melody and harmony, and the Melodycomposition[7]
system used a GA with a programmatic fitness function to
create solo melodies. GAs, however, have limitations for
music. A programmatic GA fitness function works well
when things can be mathematically represented. But,
musical aesthetics and emotion are human judgments, and
difficult to capture programmatically. Interactive GAs can
do the job, but the burden of human involvement in
training the algorithm creates a slow, tedious, limiting
“fitness bottleneck.” And, most algorithmic GAs work
from a small-scale, bottom-up evolutionary way, as in one
kind of sound “morphing” into another. Many composers,
like Stravinsky and Messiaen, don’t work this way and
instead juxtapose different ideas, and think at both high
and low levels of organization. Getting this range out of an
algorithm, and getting it to find interesting usable options
is difficult [11]. Keup applied crowdsourcing to address
the problem of the fitness bottleneck in interactive GAs for
music composition, but did not show that the
crowdsourced results were better than results obtained by
small groups providing GA training. [14]. Our work, in
contrast to the previous projects, uses “found sounds” and
electronic composition techniques, and provides a fully-
crowdsourced, fully-human, end-to-end system for
defining the character of a piece, finding appropriate
sounds, arranging the sounds into creative works, and
evaluating the results.

Crowdsourcing has been applied to a range of sound
projects [3,4,5,13,20,30]. The Gomes [12] survey cites 6
areas for music crowdsourcing, including music co-
creation, decision support, music collection management
(MCM), marketplace, music release, and crowdfunding.
Our work is most concerned with co-creation and decision
support, with elements of MCM. World Stage [32] used
mobile phones to build large-scale crowdsourced musical
experiences; Avicii x You [9] is an online music
composing website that allows the crowd to provide the
raw materials for sound compositions. The Bicycle Built
for 2,000 piece [15] collected 2000 voice recording, and
assembled them into a unique rendition of “Daisy Bell.”

Previous crowdsourcing technologies paved the way for
our work. TurKit [21] provided algorithms on Mechanical
Turk (mTurk)[1], and Turkomatic[17] described a system
for workflow design. Lasecki [19] described a way to
combine multiple streams of real-time annotation output
into a single stream. Our current implementation has
simple algorithmic and workflow support, and future work
will require expanded support for these basic capabilities.

Method: Evolving Task Design
After the user provided basic information shown in Fig. 1,
(keywords, duration, cost, etc.), generating a crowdsourced
composition involved three steps: 1) getting crowdsourced
sounds, 2) getting crowdsourced compositions, and 3)
selecting the best composition. We evolved the associated
microtasks experimentally, and made small adjustments to
improve our results at each iteration. This section describes
our approach to improving the results of each task.

Step 1: Getting crowdsourced sounds
This step asked the workers to provide sounds that
represented a requestor-defined concept, or theme, such as
serenity, anger, darkness, etc. Workers could find available
sounds on the web, record their own sounds, or create their
own sounds electronically (see Figure 2). Then, these
sounds became the set of fundamental components for
constructing the piece in Step 2. Note that the selection of
basic sounds at this stage was very important for the final
compositions. The best assembly job would fall short if the
basic sounds were unrepresentative of the concept, or if
they were of poor quality. We provided 1-3 examples of
each desired concept to guide the worker, and set a limit on
the duration of fundamental components so that the length
of the components would support the development of a
section or piece. Additionally, we required that the sounds
be free.

This process sounds simple, but we went through
multiple iterations to improve the quality and quantity of
usable results. Our initial attempts included a short
demographic survey, no examples, and requests for two
sounds of opposing quality. The oppositional quality (such
as bright vs. dark) served two purposes. First, it gave us the
ability to compare the two sets of sounds qualitatively.
Because we were working with abstract concepts, we
expected variation in interpretation of these concepts and
the kinds of sounds that users provided in a given category.
Two opposing sets of sounds, however, should be different
enough that class membership should be clear, and it
would be easier to spot sounds that were obviously out of
character compared to the other sounds in the category,
regardless of any variation within each category. Second,
the collection of oppositional sounds provided the
opportunity to create compositions which transitioned from
one character to another (e.g., from ‘serene’ to ‘angry’).
Composers do this often in practice (even in classical
sonatas [16]), and we wanted to see how crowdsourcing
could emulate a common compositional process.

We found that with this approach, workers either did not
accept the Task, or provided unusable results. Many
workers did not read the instructions carefully, and had
confusion about abstract concepts (how does “serene”

sound, for example). We thought that we might also have
some language issues. If a worker was not fluent in
English, then interpreting abstract ideas could be difficult.

Figure 2. The Sound Collection Task. This simplified
version generated the highest rate of usable results.

The next iteration included the survey, a request for two
oppositional sounds, and 1-3 examples representing each
kind of sound. This improved results, but we thought we
could get faster, higher-quality results by simplifying the
task. Given the primary goal (find the sounds), the worker
tendency to avoid reading detail, and the potential
language barriers in a platform like Mechanical Turk, we
decided that the survey was not essential. We removed it,
and the percentage of usable sounds increased.

For the final iteration in crowdsourced elemental sounds,
we asked users to provide “one or more sounds” on a
single concept. Workers did not have to process
oppositional ideas, but instead focused on one concept,
such as finding sounds that represented “brightness”. We
put the opposing concept (such as “darkness”) in a separate
Task. This way, we still collected sounds on both concepts,
but made the process simpler for each worker and for us to
programmatically separate the different type of sounds.

For our initial compositions, we requested sounds for
two sets of oppositional concepts: 1) serenity and anger,
and 2) brightness and darkness. The output of Task 1 was
a set of 15 sounds representing each concept. We chose 15
sounds, because we planned to assemble the sounds into a
20-second composition, or composition section, in Task 2.
This was the right amount of sounds to provide enough
diversity in the fundamental sounds to be interesting,
provide opportunities for assembling many different kinds
of compositions, support a 20-second composition (or
composition section) well, and not be overwhelming to
novice workers who were not trained in music. All of
these values (duration, number of sounds, etc.), can be
easily adapted in future work. The next section describes

how workers assembled the fundamental sound
components into interesting pieces.

Step 2: Getting crowdsourced compositions
This task asked workers to use the fundamental sounds
provided in Step 1 to create a 20-second composition, and
encouraged workers to use the open source Audacity
software [2]. We provided the users with detailed
instructions and a YouTube video to help them understand
how to use Audacity to do the task correctly. Because we
saw significant improvement in the results of Task 1 when
we gave examples, we also provided example
compositions for Task 2. The users could use Audacity to
compose the music melodically (horizontally, left to right
on the timeline), harmonically (vertical combinations of
sounds at the same time), contrapuntally (multiple lines of
related horizontal melody), and in sound layers (multiple
horizontal lines of different sounds). See Figure 3.

Figure 3.The Sound Composition Task. This task
provided an instructional video, sounds, and example
compositions in the download. Simplifying this task

generated more usable results in shorter times.

The evolutionary path of this task, however, began
without either examples or the instructional video. Adding
the video improved results. Later iterations experimented
with the amount of payment given to the workers to get the
job done. In our early experiments, each HIT took an
average of 48 minutes to complete (more than many Turk
tasks take), and the task required creativity, so we thought
that we would need to pay accordingly (more than Task 1).
We got results faster if we paid a little more. Some users
seemed to like this kind of Task very much. For example:
on worker wrote: This was an interesting HIT. I was
curious if you planned to do more like this? This means a
sound composition Task could be really motivating for
crowd workers; it allowed them to express their creativity.
In our final attempt towards this Task (figure 2), we added

examples and were pleased to hear the music compositions
we got from the Turkers, clearly acknowledging that
crowdsourced workers who are non-musicians could create
unique sound compositions.

Step 3: Selecting the best music composition
This task gave three options for selecting the best
composition, including a MTurk task, self-select, and
Facebook. If the requestor selected the MTurk option,
CrowdBand created a zip of the various composition
results obtained in Task 2 and posted HITs that included a
pointer for downloading the zip file. This placed the
responsibility of evaluation in the hands of the crowd, free
from the biases of the requestor, and (often) free of the
biases of musical training. The result was a voting
function, where the composition with the most votes won.
When ties occurred, CrowdBand reported all of the results
with the most votes. The self-select allowed the requestor
to choose the result himself. This is not objective, but it is
often what the requestor wants to do. The Facebook option
allows friends to select the best composition. This is an
interesting option because it is partially objective. None of
the requestor’s friends have to participate; and the
requestor doesn’t control participation. The voters in this
scenario, however, are the requestor’s friends, an
inherently biased population. Because the methods are so
different, comparing them does not make sense. Each
method has a place, and it is important to understand the
built-in biases of each choice.

Exploring Themes
We first explored the emotional themes of “anger” and
“serenity” and the abstract themes of “brightness” and
“darkness” to show how thematic keywords could be used
to inspire crowdsourced sound. We selected these themes
because they represented two different classes of
keywords, and we thought they would be familiar to
everyone. These ideas proved the concept, but were
limiting, so we expanded our keyword exploration to
include four of the most common classes of themes in
sound art, which include emotional, conceptual, objective,
and numeric keywords. Emotional keywords relate to our
internal reactions to human experience. Love, for example,
is one of the most common themes in popular music, and it
inspired Messiaen’s “Turangalila Symphonie”. Conceptual
keywords are abstract, but nonemotional, like the idea of
“large,” which motivated Peter Gabriel’s “Big Time.”
Objective keywords point to physical objects or beings in
the natural world, like Prokoviev’s “Peter and the Wolf,”
where instrumental solos represent a character in the story.
Numeric keywords are important in modern serial
techniques [28], such as works by Schoenberg and Boulez,
where numeric sequences represent repeated sequences of

pitches, intervals, dynamic levels, and other musical
structures. We selected keywords from each category to
show that CrowdBand can produce a range of works (see
Table 1).

Emotional Conceptual Objective Numeric
Anger
Serenity

Aliens
Brightness
Darkness
Peace
War

Birds
Cats
Humans

One
Multitude

Table 1: Theme Categories and Crowdsourced Works

System Design

Figure 4: Structural System Overview

Figure 4 shows the CrowdBand system components and
their interfaces with Mechanical Turk and Facebook. The
CrowdBand Manager is the top-level controller. It accepts
keyword descriptions that describe the desired piece, target
composition length, desired completion date, cost controls,
and evaluation methods to use. Then, it partitions the
problem into a series of micro-tasks in finding fundamental
sounds, composing small pieces or sections, and evaluating
the resulting compositions. The Sound Element Manager
generates tasks in Mechanical Turk which request sounds,
stay within cost constraints, retrieve the results, and present
the task status and final results to the requestor. Similarly,
the Sound Composition Manager generates tasks in
Mechanical Turk which ask the workers to use the
crowdsourced collection of fundamental sounds to create a
small piece. Finally, the Sound Evaluation Manager
generates Mechanical Turk tasks and Facebook postings
which allow workers to select the best resulting
compositions. We kept the human in the loop at each stage
to provide built-in usability and performance checkpoints,
and used this information to make minor adjustments

during iterative development that improved the quality of
the crowdsourced output at each iteration (we discuss this
further in the Results section).

When the requestor launches the job, the CrowdBand
Manager partitions it into small tasks and organizes them
into the workflow shown in Figure 5 and described step-
by-step below.

 Figure 5: System Workflow

Step1: The requestor inputs one or more keywords, or
“themes,” of his choice that capture his imagination for the
piece. For example, if the requestor wants a composition
that portrays peace, he can feed in the keyword “Peace”. If
he wants his music composition to portray both peace and
anger, he can feed in two keywords: “Peace,” and “Anger”.

Step 2: The requestor tells CrowdBand the desired
duration (D) of the music composition. The default
maximum duration is ten seconds, and there is no limit on
the minimum duration.

Step 3: The requestor tells CrowdBand the number of
days (T) in which he wants the results. Based on our
experience, we set the minimum number of days required
to be at least four. We allow one day to get sounds (TG),
two days to get compositions (TC) based on the sounds, and
one day to get the best composition (TB) out of several
compositions. The default is one week (two days to get
sounds, four days to get compositions based on the sounds,
and one day to get the best composition out of several
compositions). CrowdBand does not, however, guarantee
results in the desired number of days. We tailor the task to
increase the probability of getting results within the desired
time frame.

Step 4: For each keyword, CrowdBand estimates the
number of individual sounds required, the number of users
required, and total cost based on duration of the music
composition. We give the requestor two options: Thrifty
mode (which costs less, but has potentially lower-quality,

slower results), and Regular mode (which is the
recommended cost, but has potentially higher-quality,
faster results). We do the following calculations that for
each keyword (i):

Duration in seconds = D
Number of days = T
Thrifty mode
Days for Task 1 HITs (TG) = ceil (T * 0.33)
Number of sounds required (N1Si) = ceil (D * 0.5) + TG
Number of users (N1Ui) = N1Si
Individual compensation = $0.05
Total compensation (C1i) = N1Ui x $0.05
Regular mode
Days for Task 1 HITs (TG) = ceil (T * 0.33)
Number of sounds required (N1Si) = ceil (D * 0.75) + TG
Number of users (N1Ui) = N1Si
Individual compensation = $0.05
Total compensation (C1i) = $ N1Ui x 0.05
Step 5: The requestor saves the project, and

CrowdBand automatically launches the first HIT to request
fundamental sounds, based on the parameters described in
steps 1-4. CrowdBand uses MTurk’s Java API to post
HITs, approve them, and get results. Currently,
CrowdBand automatically approves the workers’ results,
downloads the sounds, and saves them locally. A progress
bar shows the status in terms of the number of sounds
received from the Turkers. CrowdBand also shows the
elapsed time and the total time targeted for requesting
sounds. When the requested number of sounds has been
received, CrowdBand automatically zips up all of the files
received from the Turkers, uploads them to our online
repository, and creates the URL to be used in the next step.
The requestor may use the Show Results feature anytime to
hear the received sounds. Also, the user may start Step 6
manually after Step 5 is 80% complete.

Step 6: CrowdBand requests sound compositions that
use the sounds collected in Step 5 for each keyword (i),
and waits for the results to arrive. We do the following
calculations:
Duration in seconds = D
Number of days = T

Thrifty mode
Days for Task 2 HITs (TC) = ceil (T * 0.5)
Number of compositions (N2C) = ceil (D * 0.1) + TC
Number of users (N2U) = N2C
Individual compensation = $ (1/20 * D)
Total compensation (C2) = $ (N2U x (1/20 * D))
Regular mode
Days for Task 2 HITs (TC) = ceil (T * 0.5)
Number of compositions (N2C) = ceil (D * 0.15) + TC
Number of users (N2U) = N2C
Individual compensation = $ (1/20 * D)
Total compensation (C2) = $ (N2U x (1/20 * D))
Again, CrowdBand automatically approves the results,

downloads the music compositions from our online

repository, and saves them. CrowdBand displays a
progress bar to show the number of music compositions
received, and shows the time allotted and elapsed. The user
can click the Show Results button any time to hear the
music compositions. When the Turkers complete all of the
compositions, CrowdBand automatically zips all of the
Turkers’ music compositions, uploads them to our online
repository, and creates a link to be used in the next step.
The requestor may also start Step 7 manually after 80% of
the compositions have been completed.

Step 7: CrowdBand selects the best of all of the
compositions, according to the option selected in Step 4.
We describe each option below.

Self-select
The requestor selects the best composition.
Crowd select
Turkers select the best composition by voting, and ties
are allowed.
We do the following calculations:

Number of days = T
Thrifty mode
Days for Task 3 HITs (TS) = ceil(T * 0.16)
Number of compositions from Step 6 = N2C
Number of users (N3U) = ceil(N2C /3) + TS
Individual compensation = $0.05
Total compensation (C3) = $ N3U x 0.05
Regular mode
Days for Task 3 HITs (TS) = ceil(T * 0.16)
Number of compositions from Step 6 = N2C
Number of users (N3U) = ceil(N2C /2) + TS
Individual compensation = $0.05
Total compensation (C3) = $ N3U x 0.05

Again, CrowdBand automatically approves the Turkers’
work, and downloads and saves the results. This stage
also displays the progress bar, time elapsed, and total
time allotted; and the requestor can click the Show
Results button at any time.
Friend select
CrowdBand posts a Facebook status update, and allows
his/her friends to select the best musical composition.

Results
We describe the results at each step of the process, and
then the overall compositional output. The process for
requesting sounds grew organically. The first attempt at
crowdsourcing primitive sounds (referenced in Table 2,
Version I) was the most complex, and provided the lowest
ratio of usable sounds to total sounds provided. Version II
simplified the overall presentation of the Task, and
provided examples so that workers could see at least one
type of sound which represented an abstract concept.
Increasing simplifications of the Task resulted a larger
percentage of usable sounds. Version III removed the

demographic survey, and IV split the Task into two parts –
one for each opposing concept.

We observed a steady increase in the number of usable
results as we simplified the Tasks, from about 30% usable
results to about 90% usable results at the extremes. The
rate of completed Tasks also increased. We also saw a
slight decrease in the rate of sound production by the
crowd as we simplified the Tasks. The simpler Tasks
produced about 16% fewer sounds than the more complex
Tasks. If necessary, we might be able to compensate for
this in the future by simply posting more batches of
requests for sounds.

Version
Number

Prototype
Description

I -Task description only
-No examples provided
-Short demographic survey questions included
-Oppositional concepts (e.g. “bright vs. “dark”)
-Request 2 sounds, one for each concept
-2 separate entry boxes, 1 for each sound

II -Add examples for each type of sound requested
-Simplify the description
- Lighten the tone of the description

III -Simplify by removing demographic survey
-Continue to request 2 sounds, one for each
oppositional concept (e.g. “bright” vs. “dark)
-Simplify by using only 1 text entry box for all
sounds

IV -Simplify further by requesting one or more
sounds about a single concept (e.g., “bright”)
-Put the other concept in a separate Task (e.g.,
“dark”)
-Only 1 text entry box for all sounds provided

Table 2. An increasingly simplified series of
prototypes for requesting sounds

Version
Number

No. of
tasks
Complete

Avg. no.
of

Sounds/
Task

Avg. no. of

Sounds/
Day

% of

usable
Sounds

I 10 2 2 30%
II 15 2 6 53%
III 17 1.76 6 74%
IV 17 1.65 2.5* 90%

Table3. Result of simplification on volume of sounds
produced and number of usable sounds. *Recall that

in Version IV we split the Task into two parts.

In Table 3, note that in Stage IV, we split the Task into
two parts. The stage III Task asking for sounds
representing both “brightness” and “darkness” split into
two separate Tasks in Stage IV: one Task requesting
sounds about “brightness,” and another requesting sounds
about “darkness.” Since we ran the two separate Tasks
concurrently, the combined output of the two Tasks

produced a total average 5 sounds per day. This combined
average is smaller than the average 6 sounds per day we
got in Stage III, but the overall quality of the results was
greatly improved. In addition, we note that as the Tasks
were simplified, the workers accepted and completed more
Tasks within the same amount of time (a 5-day window).

When the workers failed to provide usable sounds, the
failures fell into one of the following categories: 1) failed
to provide a URL or a sound, 2) provided a URL, but not
to a sound, 3) provided a URL to a library of sounds
instead of specific sounds, 4) sound was not free, 5) sound
was too long, or 6) provided sounds which were clearly
outside the character of what we requested. When users
failed to provide a URL, they submitted unrelated text,
which showed confusion about what they were being asked
to do, possibly a language barrier. When they provided a
URL to something other than a sound, often it was a link to
a music website or a movie which related to the abstract
concept (for example, the movie or the band named
“Serenity,” when asked to provide sounds about
“serenity”). The most common unusable results were
workers providing a link to a library or index of sounds
relating to the concept, and providing sounds which were
too long. Users gave us links to entire YouTube
performances of famous pieces, such as Beethoven’s “Fur
Elise.”

We were lenient when judging whether a sound was
“within character,” since users had many ways of
interpreting abstract concepts. Some workers selected
sounds which made them feel emotions which were similar
to the concepts, such as “shimmery” sounds for the concept
of “brightness”. Some workers were not able to translate an
abstract concept such as “brightness” directly into sound,
but instead picked sounds relating to visual light. We
received sounds of Bic lighters and light sabers for
“brightness”, and we thought that this was fitting. It
worked well and added to the diversity of sounds within
the category. Similarly, for the concept of “darkness,” we
received abstract rumbling, electronic ambient sounds, and
sounds of owls and crickets (the abstract vs. the concrete
interpretation). What were sounds clearly out of character?
The yowling cat and screaming man we received when we
asked for sounds representing “serenity.”

We first focused on two sets of opposing concepts, and
followed these ideas through the entire workflow to
produce compositions: 1) serenity vs. anger (in stages I-
II), and 2) brightness vs. darkness (in stages III and IV).
We experimented with other oppositional concepts, such as
cats vs. birds, humans vs. aliens, and war vs. peace. Not
surprisingly, when the concepts were more concrete, the
workers gave us more results, faster.

When we explored the two other theme categories
(objective and numeric), we found that workers most often
found actual recordings of the object (birds, cats, and

humans). When a range of sounds was easy to find (like
bird calls), we got a diverse set of results. The initial range
of sounds we got for the keywords “cats” and “human”
was more narrow. Very few workers abstracted the
concept, for example, into “birdlike” sounds. Numeric
keywords generated an interesting range of results, from
recordings of “one” sound, to “lonely” sounds like a
howling lone wolf.

We followed a similar, organic process in Task 2 and
implemented three increasingly simple versions of the
software. Version I was relatively complex, and workers
did not accept any of the available tasks for several days.
In Version 2, we improved the task description, and added
a video to describe the task to the workers in a fun and
entertaining way. Although we received one very good
result, we learned that we had to relax the requirements for
participation (simplify the task, and not require master
workers). In the third, and final, version, we simplified the
requirements, increased the payment from $1.00 to $1.50
(because we needed results fast), and added a few example
compositions to guide the workers. This significantly
improved participation, and workers completed all of the
tasks within a few hours. Table 4 shows the results.

Version
Number

Prototype
Description

No. of Tasks
Complete

I -Task description only
-No examples provided
-Limiting participation conditions
-No descriptive video
-Difficult uploading procedure
-Low Payment ($1 per HIT)

0 of 5

II -Video description
-Increased payment ($1.5 per HIT)

1 of 5

III -Added examples
-Fewer participation criteria

5 of 5

Table 4. Prototype versions of our 2nd Task.

Please see https://code.google.com/p/crowd-band/ for the
fundamental sounds we collected in Task 1, the example
compositions provided to the workers, and samples of the
resulting compositions we collected from the workers.

Conclusion
Our original research questions were (RQ1) whether non-
musicians could design sound and compose pieces and
(RQ2) whether crowdsourcing techniques could support
any common compositional techniques. Our results show
promising answers to both questions. We were able to give
compositional micro-tasks, both in sound-finding and
sound-assembly, to the crowd, and the crowd produced
results which met the aesthetic style and time requirements
given in the request. We also showed that it is possible to
create compositions which transition from one concept, or

theme, to another. We selected oppositional concepts, such
as “brightness” and “darkness” to emphasize this result.

Our methods also suggested that giving examples
produced more usable results than not, and got results
faster. We still got a range of sounds for a single requested
concept. The number of duplicated results from the crowd
decreased after we gave examples. We also discovered
that simplifying the Tasks resulted in a higher level of
usable results (from 30-90% over the course of 3
simplifications in technique for crowdsourcing
fundamental sounds). Finally, we discovered that money
did not drive the motivation to complete the Task. The
workers effective average hourly rate was less than $1.50,
and one of the workers even wrote us and asked for more
Tasks.

Possible work for the future includes 1) improving the
compositional assembly interface to support crowdsourced
methods and untrained workers better, 2) creating
algorithms which both emulate compositional techniques,
and leverage the crowd, 3) improved, flexible workflow
made specifically for sound design and music composition,
and 4) algorithmically checking quality of the results of the
sounds and music compositions from crowd workers
before automatically approving the results. Improved
workflow design will be particularly important to scaling
out the design to longer compositions. We expect that
workflow techniques that break up a long composition into
a series of smaller, simpler Tasks will be more successful
than posting fewer, larger, more complex Tasks,
particularly given the results of our simplification in
crowdsourcing fundamental sounds. The same workflow
techniques can also give the requestor the ability to define
the structure of a music/sound composition piece in a few
simple steps, without having to have training in music
composition and sound design.

References
[1]Amazon Mechanical Turk. http://aws.amazon.com/mturk/
[2]Audacity Software. http://audacity.sourceforge.net.
[3]Barrington, L, et al. 2009. User-Centered Design of a Social
Game to Tag Music. HCOMP ACM SIGKDD Workshop on
Human Computation.
[4]Biles, J. 2007. Evolutionary Computer Music. ch 2, pp. 28-51.
Editors Miranda, E. and Biles, J. Springer-Verlag.
[5]Biles, J. 1994. GenJam: A genetic algorithm for generating
jazz solos. ICMC.
[6]Common Music. http://commonmusic.sourceforge.net.
[7]Craane, J. 2009. Melodycompostion: application for melody
composition using genetic algorithms.
http://code.google.com/p/melodycomposition.
[8]DarwinTunes. http://darwintunes.org.
[9]Ericsson, Inc. and Avicii, DJ. 2013. AVICIIXYOU.
http://www.aviciixyou.com/ CES.

[10]Garage Band. http://www.apple.com/life/garageband.
[11]Gartland-Jones, A., and Copley, P. 2003. The suitability of
genetic algorithms for musical composition. Contemporary Music
Revie2.
[12]Gomes, C. Schneider, D., Moraes, K. et al. 2012.
Crowdsourcing for Music: Survey and Taxonomy. SMC.
[13]Gomes, C. et al. 2013. Cassino Musical: A Game with a
Purpose for Social Recruitment and Measurement of Musical
Talent. CSCWD.
[14]Keup, Jessica F. 2011. Computer Music Composition using
Crowdsourcing and Genetic Algorithms. ProQuest Dissertations
and Theses.
[15]Koblin, A., and Massey, D. Bicycle Built for 2000.
http://www.bicyclebuiltfortwothousand.com .
[16]Kostka, S., and Payne, D. 2012. Tonal Harmony. McGraw-
Hill.
[17]Kulkarni, A., Can, M. and Hartmann, B. 2011. Turkomatic:
Autmatic, Recursive Task and Workflow Design for Mechanical
Turk. AAAI Workshop.
[18]Kyma Software. http://www.symbolicsound.com.
[19]Lasecki, W., Miller, C. Sadilek, A., et al. 2012. Real-Time
Captioning by Groups of Non-Experts. UIST.
[20]Lee, Jin Ha. 2010. Crowdsourcing Music Similarity
Judgments Using Mechanical Turk. ISMIR.
[21]Little, G. et al. 2010. TurKit: human computation algorithms
on mechanical turk. UIST.
[22]Morton, B., Speck, J. et al. 2010. Improving Music Emotion
Labeling Using Human Computation. HCOMP Proceedings of
ACM SIGKDD.
[23]Max/MSP Software. http://cycling74.com.
[24]Native Instruments. http://www.native-instruments.com.
[25]Roads, C. 1996. The Computer Music Tutorial. The MIT
Press.
[26]Russolo, L. 2005. The Art of Noises. Pendragon.
[27]Sanchez, A. et al. 2007. Spieldose: An Interactive Genetic
Software for Assisting to Music Composition Tasks. In Bio-
inspired Modeling of Cognitive Tasks Lecture Notes in Computer
Science, Vol. 4527, pp 617-626.
[28]Straus, J. 2004. Post-Tonal Theory. Pearson.
[29]Supercollider Software. http://supercollider.sourceforge.net.
[30]Urbano, J. et al. 2002. Crowdsourcing preference judgments
for melody composition using genetic algorithms. National
Conference on Artificial Intelligence.
[31] Varese, E. and Wen-chung, C. 1996. The Liberation of
Sound. Perspectives of New Music, Vol 1, No 1.
[32]Wang, Ge, Oh, Jieun, Salazar, Spencer, and Hamilton,
Robert. 2011. World Stage: A Crowdsourcing paradigm for
social/mobile music. ICMC.

