
 
 

CrowdBand:  An Automated Crowdsourcing Sound Composition System  

Mary Pietrowicz, Danish Chopra, Amin Sadeghi, Puneet Chandra, Brian P. Bailey, and Karrie 
Karahalios 

Department of Computer Science 
University of Illinois 

mpietro2@illinois.edu, danishchopra@gmail.com, m.a.ssadeghi@gmail.com, puneetchandra007@gmail.com, bpbailey@illinois.edu, and 
kkarahal@illinois.edu 

 
 
 
 

Abstract 
CrowdBand, a sound composition system, demonstrates 
how a crowd can create works that meet requested criteria 
and fulfill the aesthetic character given by keyword 
description and examples. CrowdBand allows flexibility in 
music composition in terms of duration of the music, 
completion time and cost of music composition by giving 
the requestor two modes - thrifty and normal. CrowdBand’s 
workflow divides the composition task into three sections:  
requesting fundamental sounds, assembling sounds into 
compositions, and evaluating the results. Based on the 
crowd workers’ responses, we conclude that crowdsourced 
workers who are non-musicians can design sound and create 
novel sound compositions through CrowdBand. We also 
conclude that CrowdBand gives the musically-untrained 
crowd workers the ability to use common compositional 
techniques, such as sound layering, vertical stacking of 
sounds to create harmonic effects, related melodic lines 
(contrapuntal techniques), and transitions between aesthetic 
notions, or sound themes. Finally, we show improved, faster 
results with successive simplification and examples. 

 Introduction    
Music creation has long been the domain of trained 
composers. Many kinds of compositional styles and 
notation exist, and they range from traditional notated 
composition on the musical staff, to completely electronic 
compositions which have no score, to popular music 
notated in lead sheet format, to electro-acoustic 
combinations (partially notated), to improvisational, and 
more. Yet, all styles require training and practice in order 
to produce coherent pieces. It is also a time-intensive and 
costly process for the composer. And, each individual 
composer has a personal style that defines the music they 
create. This is both enabling and limiting. It is enabling in 
that the composer has bounded the problem (he is a certain 

                                                
Copyright © 2013, Association for the Advancement of Artificial 
 

type of composer, with certain skills, who uses certain 
techniques, and tends to write certain kinds of pieces, etc.), 
but limiting in that a single person will not explore the 
range of what is possible to create. In this paper, we 
explore how sound compositions can be created by non-
expert crowds, because they can quickly explore a range of 
possibilities and are not limited by the boundaries of any 
one individual.  
 Our system, “CrowdBand,” assists both musicians and 
non-musicians in the creation of electroacoustic sound 
compositions. The requestors (system users) specify the 
kinds of sounds to use, the structure, length, and character 
of the piece. Our system breaks the job down into a 
workflow of tiny composition tasks that fulfill the request, 
and the workers execute the tasks that the system has 
generated. Nonmusicians can use CrowdBand to create, for 
example, a “Happy Birthday” piece for a friend, a 
signature ringtone, or a sonic work to share on social 
media. These requestors and workers (who otherwise 
would not have the experience) get a taste of composing. 
Musicians, in contrast, can use CrowdBand to explore 
styles outside of their typical range, explore sounds, and 
introduce an aleatoric (chance) element to their work.  
CrowdBand does not replace the trained musician.  

Figure 1 shows the requestor interface. First, the 
requestor fills in basic information about the piece that 
determines the cost, length, and character of the work. In 
Step 1, the crowd provides sounds in keeping with the 
duration and keyword descriptions. In Step 2, the crowd 
assembles the sounds into short pieces. The sounds can be 
arranged sequentially, simultaneously, and in multiple, 
related sequences. Finally, in Step 3, a crowd or the 
requestor select the best result. 

CrowdBand’s primary research contributions are 1) the 
system design, and 2) the iterative evaluation of the 
system. We discuss the system and its evaluation in the 
body of the paper below. We also address the following 



two research questions to analyze the effectiveness of 
crowd-sourced music: 

RQ1: Can crowdsourced workers who are non-
musicians design sounds and create musical works?   
RQ2: Can crowdsourced, untrained workers create 
pieces that use any common compositional techniques 
such as sound layering, counterpoint (multiple related 
melodies), and transitions between themes? 

Figure 1: The CrowdBand Composition Interface.        
This interface shows the basic setup and the 3 steps 

for crowdsourcing a sound composition. 

With CrowdBand, we found that the untrained crowd 
could provide sounds, which represented concepts given by 
the requestor, apply some techniques that trained musicians 
use, assemble the resultant sounds into musical pieces, and 
select the best productions from all of the workers. We also 
showed that CrowdBand could be used to create a piece 
that transitioned from one concept or theme to another, 
which is a common compositional construct.  

Related Work 
This project builds on work from multiple disciplines, 
including music composition, computer music, machine 
learning, crowdsourcing, and art. Most classical and 
popular Western music follows the conventions of 
“tonality,” [16] which govern our expectations about how 
how music should function and sound. The 20th century 
brought alternatives to the tonal system, and composers 
created works based on other organizational methods, such 
as ordered sequences of pitch classes [28]. Varese 
famously redefined music as the “organization of sound” 
[31], so that all sounds, not just instruments, could be used; 
and Russolo pioneered the use of “noise,” or “found 
sounds,” in music [26]. Computer music techniques 
evolved along with technology [25]; and today, many 

software tools provide computer music support 
[2,6,10,18,23,24,29]. Composers and engineers 
experimented with machine learning algorithms too, 
especially genetic algorithms (GAs), to try to simulate 
human works.  For example, the Spieldose [27] system 
used a GA with an interactive fitness function to make 
melody and harmony, and the Melodycomposition[7] 
system used a GA with a programmatic fitness function to 
create solo melodies. GAs, however, have limitations for 
music.  A programmatic GA fitness function works well 
when things can be mathematically represented. But, 
musical aesthetics and emotion are human judgments, and 
difficult to capture programmatically. Interactive GAs can 
do the job, but the burden of human involvement in 
training the algorithm creates a slow, tedious, limiting 
“fitness bottleneck.”  And, most algorithmic GAs work 
from a small-scale, bottom-up evolutionary way, as in one 
kind of sound “morphing” into another. Many composers, 
like Stravinsky and Messiaen, don’t work this way and 
instead juxtapose different ideas, and think at both high 
and low levels of organization.  Getting this range out of an 
algorithm, and getting it to find interesting usable options 
is difficult [11]. Keup applied crowdsourcing to address 
the problem of the fitness bottleneck in interactive GAs for 
music composition, but did not show that the 
crowdsourced results were better than results obtained by 
small groups providing GA training. [14].  Our work, in 
contrast to the previous projects, uses “found sounds” and 
electronic composition techniques, and provides a fully-
crowdsourced, fully-human, end-to-end system for 
defining the character of a piece, finding appropriate 
sounds, arranging the sounds into creative works, and 
evaluating the results.  

Crowdsourcing has been applied to a range of sound 
projects [3,4,5,13,20,30].  The Gomes [12] survey cites 6 
areas for music crowdsourcing, including music co-
creation, decision support, music collection management 
(MCM), marketplace, music release, and crowdfunding.  
Our work is most concerned with co-creation and decision 
support, with elements of MCM. World Stage [32] used 
mobile phones to build large-scale crowdsourced musical 
experiences; Avicii x You [9] is an online music 
composing website that allows the crowd to provide the 
raw materials for sound compositions. The Bicycle Built 
for 2,000 piece [15] collected 2000 voice recording, and 
assembled them into a unique rendition of “Daisy Bell.”  

Previous crowdsourcing technologies paved the way for 
our work.  TurKit [21] provided algorithms on Mechanical 
Turk (mTurk)[1], and Turkomatic[17] described a system 
for workflow design. Lasecki [19] described a way to 
combine multiple streams of real-time annotation output 
into a single stream. Our current implementation has 
simple algorithmic and workflow support, and future work 
will require expanded support for these basic capabilities. 



Method:  Evolving Task Design 
After the user provided basic information shown in Fig. 1, 
(keywords, duration, cost, etc.), generating a crowdsourced 
composition involved three steps:  1) getting crowdsourced 
sounds, 2) getting crowdsourced compositions, and 3) 
selecting the best composition. We evolved the associated 
microtasks experimentally, and made small adjustments to 
improve our results at each iteration. This section describes 
our approach to improving the results of each task. 

Step 1: Getting crowdsourced sounds 
This step asked the workers to provide sounds that 
represented a requestor-defined concept, or theme, such as 
serenity, anger, darkness, etc. Workers could find available 
sounds on the web, record their own sounds, or create their 
own sounds electronically (see Figure 2). Then, these 
sounds became the set of fundamental components for 
constructing the piece in Step 2.  Note that the selection of 
basic sounds at this stage was very important for the final 
compositions. The best assembly job would fall short if the 
basic sounds were unrepresentative of the concept, or if 
they were of poor quality. We provided 1-3 examples of 
each desired concept to guide the worker, and set a limit on 
the duration of fundamental components so that the length 
of the components would support the development of a 
section or piece.  Additionally, we required that the sounds 
be free. 

This process sounds simple, but we went through 
multiple iterations to improve the quality and quantity of 
usable results. Our initial attempts included a short 
demographic survey, no examples, and requests for two 
sounds of opposing quality. The oppositional quality (such 
as bright vs. dark) served two purposes. First, it gave us the 
ability to compare the two sets of sounds qualitatively. 
Because we were working with abstract concepts, we 
expected variation in interpretation of these concepts and 
the kinds of sounds that users provided in a given category.  
Two opposing sets of sounds, however, should be different 
enough that class membership should be clear, and it 
would be easier to spot sounds that were obviously out of 
character compared to the other sounds in the category, 
regardless of any variation within each category. Second, 
the collection of oppositional sounds provided the 
opportunity to create compositions which transitioned from 
one character to another (e.g., from ‘serene’ to ‘angry’).  
Composers do this often in practice (even in classical 
sonatas [16]), and we wanted to see how crowdsourcing 
could emulate a common compositional process. 

We found that with this approach, workers either did not 
accept the Task, or provided unusable results. Many 
workers did not read the instructions carefully, and had 
confusion about abstract concepts (how does “serene” 

sound, for example). We thought that we might also have 
some language issues. If a worker was not fluent in 
English, then interpreting abstract ideas could be difficult. 

Figure 2. The Sound Collection Task. This simplified 
version generated the highest rate of usable results. 

The next iteration included the survey, a request for two 
oppositional sounds, and 1-3 examples representing each 
kind of sound. This improved results, but we thought we 
could get faster, higher-quality results by simplifying the 
task. Given the primary goal (find the sounds), the worker 
tendency to avoid reading detail, and the potential 
language barriers in a platform like Mechanical Turk, we 
decided that the survey was not essential. We removed it, 
and the percentage of usable sounds increased. 

For the final iteration in crowdsourced elemental sounds, 
we asked users to provide “one or more sounds” on a 
single concept. Workers did not have to process 
oppositional ideas, but instead focused on one concept, 
such as finding sounds that represented “brightness”. We 
put the opposing concept (such as “darkness”) in a separate 
Task. This way, we still collected sounds on both concepts, 
but made the process simpler for each worker and for us to 
programmatically separate the different type of sounds.  

For our initial compositions, we requested sounds for 
two sets of oppositional concepts: 1) serenity and anger, 
and 2) brightness and darkness.  The output of Task 1 was 
a set of 15 sounds representing each concept. We chose 15 
sounds, because we planned to assemble the sounds into a 
20-second composition, or composition section, in Task 2.  
This was the right amount of sounds to provide enough 
diversity in the fundamental sounds to be interesting, 
provide opportunities for assembling many different kinds 
of compositions, support a 20-second composition (or 
composition section) well, and not be overwhelming to 
novice workers who were not trained in music.  All of 
these values (duration, number of sounds, etc.), can be 
easily adapted in future work. The next section describes 



how workers assembled the fundamental sound 
components into interesting pieces. 

Step 2: Getting crowdsourced compositions 
This task asked workers to use the fundamental sounds 
provided in Step 1 to create a 20-second composition, and 
encouraged workers to use the open source Audacity 
software [2]. We provided the users with detailed 
instructions and a YouTube video to help them understand 
how to use Audacity to do the task correctly. Because we 
saw significant improvement in the results of Task 1 when 
we gave examples, we also provided example 
compositions for Task 2. The users could use Audacity to 
compose the music  melodically (horizontally, left to right 
on the timeline), harmonically (vertical combinations of 
sounds at the same time), contrapuntally (multiple lines of 
related horizontal melody), and in sound layers (multiple 
horizontal lines of different sounds).  See Figure 3. 

Figure 3.The Sound Composition Task.  This task 
provided an instructional video, sounds, and example 
compositions in the download.  Simplifying this task 

generated more usable results in shorter times. 

The evolutionary path of this task, however, began 
without either examples or the instructional video. Adding 
the video improved results. Later iterations experimented 
with the amount of payment given to the workers to get the 
job done. In our early experiments, each HIT took an 
average of 48 minutes to complete (more than many Turk 
tasks take), and the task required creativity, so we thought 
that we would need to pay accordingly (more than Task 1).  
We got results faster if we paid a little more. Some users 
seemed to like this kind of Task very much. For example: 
on worker wrote: This was an interesting HIT. I was 
curious if you planned to do more like this? This means a 
sound composition Task could be really motivating for 
crowd workers; it allowed them to express their creativity. 
In our final attempt towards this Task (figure 2), we added 

examples and were pleased to hear the music compositions 
we got from the Turkers, clearly acknowledging that 
crowdsourced workers who are non-musicians could create 
unique sound compositions.  

Step 3: Selecting the best music composition 
This task gave three options for selecting the best 
composition, including a MTurk task, self-select, and  
Facebook. If the requestor selected the MTurk option, 
CrowdBand created a zip of the various composition 
results obtained in Task 2 and posted HITs that included a 
pointer for downloading the zip file. This placed the 
responsibility of evaluation in the hands of the crowd, free 
from the biases of the requestor, and (often) free of the 
biases of musical training. The result was a voting 
function, where the composition with the most votes won.  
When ties occurred, CrowdBand reported all of the results 
with the most votes. The self-select allowed the requestor 
to choose the result himself. This is not objective, but it is 
often what the requestor wants to do. The Facebook option 
allows friends to select the best composition. This is an 
interesting option because it is partially objective. None of 
the requestor’s friends have to participate; and the 
requestor doesn’t control participation. The voters in this 
scenario, however, are the requestor’s friends, an 
inherently biased population. Because the methods are so 
different, comparing them does not make sense. Each 
method has a place, and it is important to understand the 
built-in biases of each choice. 

Exploring Themes 
We first explored the emotional themes of “anger” and 
“serenity” and the abstract themes of “brightness” and 
“darkness” to show how thematic keywords could be used 
to inspire crowdsourced sound. We selected these themes 
because they represented two different classes of 
keywords, and we thought they would be familiar to 
everyone. These ideas proved the concept, but were 
limiting, so we expanded our keyword exploration to 
include four of the most common classes of themes in 
sound art, which include emotional, conceptual, objective, 
and numeric keywords. Emotional keywords relate to our 
internal reactions to human experience. Love, for example, 
is one of the most common themes in popular music, and it 
inspired Messiaen’s “Turangalila Symphonie”. Conceptual 
keywords are abstract, but nonemotional, like the idea of 
“large,” which motivated Peter Gabriel’s “Big Time.”  
Objective keywords point to physical objects or beings in 
the natural world, like Prokoviev’s “Peter and the Wolf,” 
where instrumental solos represent a character in the story.  
Numeric keywords are important in modern serial 
techniques [28], such as works by Schoenberg  and Boulez, 
where numeric sequences represent repeated sequences of 



pitches, intervals, dynamic levels, and other musical 
structures. We selected keywords from each category to 
show that CrowdBand can produce a range of works (see 
Table 1).   
 
Emotional Conceptual Objective Numeric 
Anger 
Serenity 

Aliens 
Brightness 
Darkness 
Peace 
War 

Birds 
Cats 
Humans 

One 
Multitude 

Table 1: Theme Categories and Crowdsourced Works 

System Design 

Figure 4: Structural System Overview 

Figure 4 shows the CrowdBand system components and 
their interfaces with Mechanical Turk and Facebook.  The 
CrowdBand Manager is the top-level controller.  It accepts 
keyword descriptions that describe the desired piece, target 
composition length, desired completion date, cost controls, 
and evaluation methods to use.  Then, it partitions the 
problem into a series of micro-tasks in finding fundamental 
sounds, composing small pieces or sections, and evaluating 
the resulting compositions.  The Sound Element Manager 
generates tasks in Mechanical Turk which request sounds, 
stay within cost constraints, retrieve the results, and present 
the task status and final results to the requestor.  Similarly, 
the Sound Composition Manager generates tasks in 
Mechanical Turk which ask the workers to use the 
crowdsourced collection of fundamental sounds to create a 
small piece.  Finally, the Sound Evaluation Manager 
generates Mechanical Turk tasks and Facebook postings 
which allow workers to select the best resulting 
compositions.  We kept the human in the loop at each stage 
to provide built-in usability and performance checkpoints, 
and used this information to make minor adjustments 

during iterative development that improved the quality of 
the crowdsourced output at each iteration (we discuss this 
further in the Results section).  

When the requestor launches the job, the CrowdBand 
Manager partitions it into small tasks and organizes them 
into the workflow shown in Figure 5 and described step-
by-step below.  

     Figure 5:  System Workflow  

Step1: The requestor inputs one or more keywords, or 
“themes,” of his choice that capture his imagination for the 
piece.  For example, if the requestor wants a composition 
that portrays peace, he can feed in the keyword “Peace”.  If 
he wants his music composition to portray both peace and 
anger, he can feed in two keywords: “Peace,” and “Anger”. 

Step 2: The requestor tells CrowdBand the desired 
duration (D) of the music composition. The default 
maximum duration is ten seconds, and there is no limit on 
the minimum duration.  

Step 3: The requestor tells CrowdBand the number of 
days (T) in which he wants the results. Based on our 
experience, we set the minimum number of days required 
to be at least four.  We allow one day to get sounds (TG), 
two days to get compositions (TC) based on the sounds, and 
one day to get the best composition (TB) out of several 
compositions. The default is one week (two days to get 
sounds, four days to get compositions based on the sounds, 
and one day to get the best composition out of several 
compositions). CrowdBand does not, however, guarantee 
results in the desired number of days.  We tailor the task to 
increase the probability of getting results within the desired 
time frame.  

Step 4: For each keyword, CrowdBand estimates the 
number of individual sounds required, the number of users 
required, and total cost based on duration of the music 
composition. We give the requestor two options: Thrifty 
mode (which costs less, but has potentially lower-quality, 



slower results), and Regular mode (which is the 
recommended cost, but has potentially higher-quality, 
faster results).  We do the following calculations that for 
each keyword (i): 

Duration in seconds = D 
Number of days = T 
Thrifty mode 
Days for Task 1 HITs (TG) = ceil (T * 0.33) 
Number of sounds required (N1Si) = ceil (D * 0.5) + TG 
Number of users (N1Ui) = N1Si 
Individual compensation = $0.05 
Total compensation (C1i) = N1Ui x $0.05 
Regular mode 
Days for Task 1 HITs (TG) = ceil (T * 0.33) 
Number of sounds required (N1Si) = ceil (D * 0.75) + TG 
Number of users (N1Ui) = N1Si 
Individual compensation = $0.05 
Total compensation (C1i) = $ N1Ui x 0.05 
Step 5:  The requestor saves the project, and 

CrowdBand automatically launches the first HIT to request 
fundamental sounds, based on the parameters described in 
steps 1-4. CrowdBand uses MTurk’s Java API to post 
HITs, approve them, and get results. Currently, 
CrowdBand automatically approves the workers’ results, 
downloads the sounds, and saves them locally. A progress 
bar shows the status in terms of the number of sounds 
received from the Turkers. CrowdBand also shows the 
elapsed time and the total time targeted for requesting 
sounds. When the requested number of sounds has been 
received, CrowdBand automatically zips up all of the files 
received from the Turkers, uploads them to our online 
repository, and creates the URL to be used in the next step.  
The requestor may use the Show Results feature anytime to 
hear the received sounds. Also, the user may start Step 6 
manually after Step 5 is 80% complete. 

Step 6: CrowdBand requests sound compositions that 
use the sounds collected in Step 5 for each keyword (i), 
and waits for the results to arrive. We do the following 
calculations: 
Duration in seconds = D 
Number of days = T 

Thrifty mode 
Days for Task 2 HITs (TC) = ceil (T * 0.5) 
Number of compositions (N2C) = ceil (D * 0.1) + TC 
Number of users (N2U) = N2C 
Individual compensation = $ (1/20 * D) 
Total compensation (C2) = $ (N2U x (1/20 * D)) 
Regular mode 
Days for Task 2 HITs (TC) = ceil (T * 0.5) 
Number of compositions (N2C) = ceil (D * 0.15) + TC 
Number of users (N2U) = N2C 
Individual compensation = $ (1/20 * D) 
Total compensation (C2) = $ (N2U x (1/20 * D)) 
Again, CrowdBand automatically approves the results, 

downloads the music compositions from our online 

repository, and saves them. CrowdBand displays a 
progress bar to show the number of music compositions 
received, and shows the time allotted and elapsed. The user 
can click the Show Results button any time to hear the 
music compositions. When the Turkers complete all of the 
compositions, CrowdBand automatically zips all of the 
Turkers’ music compositions, uploads them to our online 
repository, and creates a link to be used in the next step. 
The requestor may also start Step 7 manually after 80% of 
the compositions have been completed. 

Step 7: CrowdBand selects the best of all of the 
compositions, according to the option selected in Step 4.  
We describe each option below. 

Self-select 
The requestor selects the best composition. 
Crowd select 
Turkers select the best composition by voting, and ties 
are allowed. 
We do the following calculations: 

Number of days = T 
Thrifty mode 
Days for Task 3 HITs (TS) = ceil(T * 0.16) 
Number of compositions from Step 6 = N2C 
Number of users (N3U) = ceil(N2C /3) + TS 
Individual compensation = $0.05 
Total compensation (C3) = $ N3U x 0.05 
Regular mode 
Days for Task 3 HITs (TS) = ceil(T * 0.16) 
Number of compositions from Step 6 = N2C 
Number of users (N3U) = ceil(N2C /2) + TS 
Individual compensation = $0.05 
Total compensation (C3) = $ N3U x 0.05 

Again, CrowdBand automatically approves the Turkers’ 
work, and downloads and saves the results. This stage 
also displays the progress bar, time elapsed, and total 
time allotted; and the requestor can click the Show 
Results button at any time. 
Friend select 
CrowdBand posts a Facebook status update, and allows 
his/her friends to select the best musical composition. 

Results 
We describe the results at each step of the process, and 
then the overall compositional output. The process for 
requesting sounds grew organically. The first attempt at 
crowdsourcing primitive sounds (referenced in Table 2, 
Version I) was the most complex, and provided the lowest 
ratio of usable sounds to total sounds provided.  Version II 
simplified the overall presentation of the Task, and 
provided examples so that workers could see at least one 
type of sound which represented an abstract concept.  
Increasing simplifications of the Task resulted a larger 
percentage of usable sounds. Version III removed the 



demographic survey, and IV split the Task into two parts – 
one for each opposing concept. 

We observed a steady increase in the number of usable 
results as we simplified the Tasks, from about 30% usable 
results to about 90% usable results at the extremes.  The 
rate of completed Tasks also increased. We also saw a 
slight decrease in the rate of sound production by the 
crowd as we simplified the Tasks.   The simpler Tasks 
produced about 16% fewer sounds than the more complex 
Tasks.  If necessary, we might be able to compensate for 
this in the future by simply posting more batches of 
requests for sounds. 
 
Version 
Number 

Prototype  
Description 

I -Task description only 
-No examples provided 
-Short demographic survey questions included 
-Oppositional concepts (e.g. “bright vs. “dark”) 
-Request 2 sounds, one for each concept 
-2 separate entry boxes, 1 for each sound 

II -Add examples for each type of sound requested 
-Simplify the description 
- Lighten the tone of the description 

III -Simplify by removing demographic survey 
-Continue to request 2 sounds, one for each 
oppositional concept (e.g. “bright” vs. “dark) 
-Simplify by using only 1 text entry box for all 
sounds 

IV -Simplify further by requesting one or more 
sounds about a single concept (e.g., “bright”) 
-Put the other concept in a separate Task (e.g., 
“dark”) 
-Only 1 text entry box for all sounds provided 

Table 2. An increasingly simplified series of 
prototypes for requesting sounds 

 
 
 
Version 
Number 

 
No. of 
tasks 
Complete 

Avg. no. 
of 

Sounds/ 
Task 

 
Avg. no. of  

Sounds/ 
Day 

 
% of 

usable 
Sounds 

I 10 2 2 30% 
II 15 2 6 53% 
III 17 1.76 6 74% 
IV 17 1.65 2.5* 90% 

Table3. Result of simplification on volume of sounds 
produced and number of usable sounds.  *Recall that 

in Version IV we split the Task into two parts.   

In Table 3, note that in Stage IV, we split the Task into 
two parts.  The stage III Task asking for sounds 
representing both “brightness” and “darkness” split into 
two separate Tasks in Stage IV:  one Task requesting 
sounds about “brightness,” and another requesting sounds 
about “darkness.”  Since we ran the two separate Tasks 
concurrently, the combined output of the two Tasks 

produced a total average 5 sounds per day.  This combined 
average is smaller than the average 6 sounds per day we 
got in Stage III, but the overall quality of the results was 
greatly improved.  In addition, we note that as the Tasks 
were simplified, the workers accepted and completed more 
Tasks within the same amount of time (a 5-day window). 

When the workers failed to provide usable sounds, the 
failures fell into one of the following categories:  1) failed 
to provide a URL or a sound, 2) provided a URL, but not 
to a sound, 3) provided a URL to a library of sounds 
instead of specific sounds, 4) sound was not free, 5) sound 
was too long, or 6) provided sounds which were clearly 
outside the character of what we requested. When users 
failed to provide a URL, they submitted unrelated text, 
which showed confusion about what they were being asked 
to do, possibly a language barrier. When they provided a 
URL to something other than a sound, often it was a link to 
a music website or a movie which related to the abstract 
concept (for example, the movie or the band named 
“Serenity,” when asked to provide sounds about 
“serenity”). The most common unusable results were 
workers providing a link to a library or index of sounds 
relating to the concept, and providing sounds which were 
too long. Users gave us links to entire YouTube 
performances of famous pieces, such as Beethoven’s “Fur 
Elise.”   

We were lenient when judging whether a sound was 
“within character,” since users had many ways of 
interpreting abstract concepts. Some workers selected 
sounds which made them feel emotions which were similar 
to the concepts, such as “shimmery” sounds for the concept 
of “brightness”. Some workers were not able to translate an 
abstract concept such as “brightness” directly into sound, 
but instead picked sounds relating to visual light. We 
received sounds of Bic lighters and light sabers for 
“brightness”, and we thought that this was fitting. It 
worked well and added to the diversity of sounds within 
the category. Similarly, for the concept of “darkness,” we 
received abstract rumbling, electronic ambient sounds, and 
sounds of owls and crickets (the abstract vs. the concrete 
interpretation). What were sounds clearly out of character?  
The yowling cat and screaming man we received when we 
asked for sounds representing “serenity.” 

We first focused on two sets of opposing concepts, and 
followed these ideas through the entire workflow to 
produce compositions:  1) serenity vs. anger (in stages I-
II), and 2) brightness vs. darkness (in stages III and IV).  
We experimented with other oppositional concepts, such as 
cats vs. birds, humans vs. aliens, and war vs. peace. Not 
surprisingly, when the concepts were more concrete, the 
workers gave us more results, faster.  

When we explored the two other theme categories 
(objective and numeric), we found that workers most often 
found actual recordings of the object (birds, cats, and 



humans). When a range of sounds was easy to find (like 
bird calls), we got a diverse set of results. The initial range 
of sounds we got for the keywords “cats” and “human” 
was more narrow. Very few workers abstracted the 
concept, for example, into “birdlike” sounds. Numeric 
keywords generated an interesting range of results, from 
recordings of “one” sound, to “lonely” sounds like a 
howling lone wolf. 

We followed a similar, organic process in Task 2 and 
implemented three increasingly simple versions of the 
software. Version I was relatively complex, and workers 
did not accept any of the available tasks for several days.  
In Version 2, we improved the task description, and added 
a video to describe the task to the workers in a fun and 
entertaining way. Although we received one very good 
result, we learned that we had to relax the requirements for 
participation (simplify the task, and not require master 
workers). In the third, and final, version, we simplified the 
requirements, increased the payment from $1.00 to $1.50 
(because we needed results fast), and added a few example 
compositions to guide the workers. This significantly 
improved participation, and workers completed all of the 
tasks within a few hours. Table 4 shows the results. 

  
Version 
Number 

Prototype 
Description 

No. of Tasks 
Complete 

I -Task description only 
-No examples provided 
-Limiting participation conditions 
-No descriptive video 
-Difficult uploading procedure 
-Low Payment ($1 per HIT) 

0 of 5 

II -Video description 
-Increased payment ($1.5 per HIT) 

1 of 5 

III -Added examples 
-Fewer participation criteria 

5 of 5 

Table 4. Prototype versions of our 2nd Task.   

Please see https://code.google.com/p/crowd-band/ for the 
fundamental sounds we collected in Task 1, the  example 
compositions provided to the workers, and samples of the 
resulting compositions we collected from the workers.   

Conclusion  
Our original research questions were (RQ1) whether non-
musicians could design sound and compose pieces and 
(RQ2) whether crowdsourcing techniques could support 
any common compositional techniques.  Our results show 
promising answers to both questions. We were able to give 
compositional micro-tasks, both in sound-finding and 
sound-assembly, to the crowd, and the crowd produced 
results which met the aesthetic style and time requirements 
given in the request.  We also showed that it is possible to 
create compositions which transition from one concept, or 

theme, to another. We selected oppositional concepts, such 
as “brightness” and “darkness” to emphasize this result.   

Our methods also suggested that giving examples 
produced more usable results than not, and got results 
faster. We still got a range of sounds for a single requested 
concept.  The number of duplicated results from the crowd 
decreased after we gave examples.  We also discovered 
that simplifying the Tasks resulted in a higher level of 
usable results (from 30-90% over the course of 3 
simplifications in technique for crowdsourcing 
fundamental sounds).  Finally, we discovered that money 
did not drive the motivation to complete the Task.  The 
workers effective average hourly rate was less than $1.50, 
and one of the workers even wrote us and asked for more 
Tasks. 

Possible work for the future includes 1) improving the 
compositional assembly interface to support crowdsourced 
methods and untrained workers better, 2) creating 
algorithms which both emulate compositional techniques, 
and leverage the crowd, 3) improved, flexible workflow 
made specifically for sound design and music composition, 
and 4) algorithmically checking quality of the results of the 
sounds and music compositions from crowd workers 
before automatically approving the results. Improved 
workflow design will be particularly important to scaling 
out the design to longer compositions. We expect that 
workflow techniques that break up a long composition into 
a series of smaller, simpler Tasks will be more successful 
than posting fewer, larger, more complex Tasks, 
particularly given the results of our simplification in 
crowdsourcing fundamental sounds.  The same workflow 
techniques can also give the requestor the ability to define 
the structure of a music/sound composition piece in a few 
simple steps, without having to have training in music 
composition and sound design.  
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