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Abstract

myMap is a dynamically changing map that displays different landmarks that are related to a user’s current

context. Since such a map is more likely to be related to a user’s cognitive map than are traditional

maps, it is hoped that myMap will reduce the cognitive load on a user. Furthermore, myMap is designed

as a personalized map that is unique in the sense that it displays landmarks that reflect a user’s spatial

identity. myMap brings together brings context, commonsense and maps together in an attempt to develop

a framework that is able to display dynamic user centered maps.

iii



Acknowledgements

I want to take this opportunity to thank Prof. Karrie Karahalios for her able guidance and intellectual

support throughout this project. If it wasn’t for her patience and inspiration, this project would not have

been possible.

I also want to thank my fellow friends in the Social Computing group who, through humor and sometimes

derision, made sure I stayed the course and finished myMap. Feedback received from them are highly

appreciated.

Finally, I would like to thank members of my family for supporting my decision of doing research through

difficult times in their own lives. The last two years of research experience wouldn’t have been possible

without their moral support.

iv



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Project motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Layout of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Cognitive basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Animal navigation and cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Cognitive maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 What aspects of maps are important? . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Overview of maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Maps before the age of technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Maps in the age of technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Sketch maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Commonsense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Overview of commonsense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Commonsense knowledge for maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Inherent inaccuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Speculations on personalized commonsense . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Maps as tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 User Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Context awareness in literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.4 Context awareness in maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 3 Map Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1 Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 What is a landmark? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Personalized landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Universal landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.4 Landmarks in maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.5 Mining data about landmarks from the web . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Nearness - concepts and calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Spatial nearness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Conceptual nearness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Temporal nearness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 Social nearness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.5 Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



3.2.6 Accuracy in calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Learning components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Graphic component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 5 User comments and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1 User Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.1 User location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.2 Landmark text from web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.3 Location of landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.1 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.2 Eight sets from raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



List of Tables

6.1 The relative location of all landmarks used in the project. . . . . . . . . . . . . . . . . . . . . 52
6.2 General code structure. Only the important classes/objects are shown. . . . . . . . . . . . . . 53
6.3 The first four of the eight lists created from the raw data of bombayGrill. . . . . . . . . . . . . 54
6.4 The last four of the eight lists created from the raw data of bombayGrill. . . . . . . . . . . . . 54
6.5 Normalized conceptual nearness values for a few landmarks. . . . . . . . . . . . . . . . . . . . 55

vii



List of Figures

1.1 Two different versions of the map of Cyberguide by Abowd et. al, [1]. . . . . . . . . . . . . . . 3
1.2 GloBuddy, a translation tool that uses commonsense by Lieberman et. al, [25]. . . . . . . . . 4

2.1 Titled: Rock art - map. Redrawing of the oldest known plan of an inhabited site, Bedolina,
Val Camonica, Italy, circa 1200 BC Source: [3]. . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Titled: Diwali celebrations at the royal palace at Kotah, Rajasthan. This map and many oth-
ers like it were commissioned by kings for decorative, commemorative and utilitarian purposes,
circa 1600 Source: [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Titled: Africa. The Africa shown in this map forms a part of an eclectic world map from
India, circa 1700. Source: [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Titled: Panoramic Map of Buddhistic India. This is a map drawn by Hashimoto Sadahide in
1860 depicting his conception of India Source: [39]. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Titled: A description of East India. This is a map drawn by William Baffin and Thomas Roe
of the Mughal empire in India, circa 1600 Source: [3]. . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Titled: Hindoostan. This is a map of India drawn by James Rennell for East India Company,
1778. Source: [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Titled: Map of India. This is a modern political map of India. Disputed regions have been
shown as parts of India. Source: [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Titled: Google map. This map shows the location around the author’s university campus
shown in figure 3.1. Source: [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Titled: Satellite map. This map shows satellite image of the same location as seen in figure
2.8. Source: [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.10 Titled: Hybrid map. This map shows information of both figure 2.8 and figure 2.9. Source:
[17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.11 Titled: Ch’onhodo: ‘All Under Heaven’. This map from the year 1800 maintains China at
the center of the known universe and shows both real and mythical places. Source: [3]. . . . . 16

2.12 Sketch map of a portion of the university campus of the author. . . . . . . . . . . . . . . . . . 16
2.13 An excerpt from ConceptNets semantic network of commonsense knowledge. Compound (as

opposed to simple) concepts are represented in semi-structured English by composing a verb
(e.g. drink) with a noun phrase (coffee) or a prepositional phrase (in morning). . . . . . . . . 19

3.1 A small portion of the campus map of the author’s campus. . . . . . . . . . . . . . . . . . . . 27

4.1 Function f(y) = 1
2+y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Temporal nearness of four landmarks at different times. . . . . . . . . . . . . . . . . . . . . . 41
4.3 Conceptual nearness value of bombayGrill for different values of maximum number of hy-

ponyms and maximum number of lemmas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Conceptual nearness value of beckmanInstitute for different values of maximum number of

hyponyms and maximum number of lemmas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Old version of the program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 The map as displayed at time 9:30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7 The map as displayed at time 9:40 am. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

viii



Chapter 1

Introduction

1.1 Project motivation

In its true essence, ubiquitous computing is invisible, everywhere computing that does not live on a personal

device of any sort, but is in the woodwork everywhere [45]. The initial incarnation of ubiquitous computing

was in the form of “tabs”, “pads”, and “boards” built at Xerox PARC. This served as an inspiration for

mobile computing and helped us shape our research question - what kind of maps would be suitable to

display in a mobile device?

As the project evolved, we became convinced that a static map in a digital medium would offer little

beyond existing traditional solutions. Furthermore, the display in mobile devices are typically small and

traditional maps - digital or otherwise have been designed with no display area constraints in mind. To add

oil to the fire, although many services in a mobile setting were taking advantage of sensor information that

indicated a user’s context, there seemed no way to incorporate that information in maps.

Our innocent research question started becoming a complex web of interrelated questions and inad-

equately explored concepts. After a few months of literature survey and blind exploration of ideas, we

decided to abandon our initial quest for maps on mobile devices and instead focus on the meat of the prob-

lem itself - what is, if any, the theoretical foundation that decides what a map should look like?

This project is an attempt to answer that question.

In our investigations, we found out that a dynamic map that shows only those landmarks that are of

concern to the user at any given time is perhaps the right kind of map to display. As will be explained in

later sections and chapters, this requires careful thinking about what physical space means to animals and

how one’s changing social and physical context alters one’s perception of what is important in a map.

The software that came out of the project wasn’t meant to be a full fledged end product so our efforts

were focused on developing the framework for myMap rather than the visual interface. A better interface

design and a future user study would definitely have been the next step were the project to continue longer.

1



1.2 Layout of thesis

myMap consists of three main components - context, commonsense and maps - which have traditionally

been thought of as independent areas of research. This thesis paper is written to highlight the key research

questions of each of these components and highlight links where they exist between these components.

This chapter describes the motivation for the project and provides pointers to related research serving as

an introduction to the project. The next chapter, chapter 2, explores each of the components as independent

entities and also explores their relationship with one another. With the addition of a section on cognitive

maps, the chapter tries to outline a cognitive basis for the project.

Chapter 3 describes the theoretical contribution of this project. Novel reformulation of the concept

of landmark is provided and a new concept, called nearness, is introduced in sections 3.1 and 3.2 respec-

tively. Although not implemented in the project, a future research direction that incorporates reenforcement

learning is discussed in section 3.3.

Chapter 4 describes the implementation of the ideas presented in the preceding chapter. The input data,

the mechanisms for manipulating the input to generate the map and the final product of the project are

described in this chapter. Screen shots of the running program and tables related to the implementation

can be found in both chapter c4 and the appendix, chapter 6.

Finally, chapter 5 serves as a conclusion of the thesis outlining what we have achieved through this

project. In lack of a user study, we also provide anecdotal user comments in section 5.1.

1.3 Related Work

As outlined in the previous sections, myMap consists of three main components - context, commonsense and

map. As of this writing the author is not aware of any other project that attempts to integrate all three

components. In this section, we will discuss a few projects that incorporate some parts of one or more of

these components.

Context, which is the subject of a more detailed analysis in section 2.4.2, is pervasively present in most

modern day computing applications in one form or another. Applications like self-locking cars have enjoyed

certain commercial success but majority of context aware applications remain mostly in the laboratories.

Capturing and maintaining context is the main research agenda of most context aware computing

projects. Most systems capture current context partly from sensors, partly from existing information (dairies,

to-do lists, weather forecasts etc.), partly perhaps from user models and task models, partly from the state

of the user’s computing equipment and the user’s interaction with the equipment, and partly from explicit
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Figure 1.1: Two different versions of the map of Cyberguide by Abowd et. al, [1].

settings by the user [6]. Once context is thus captured, it is exploited to create applications that are respon-

sive to their environments. One of the early context aware application involved PARCTab, a mobile device

that used infrared-based cellular network for communications [40]. This early application spurred a lot of

interest in context aware systems for mobile computers.

Dey et al. describe CybreMinder, a prototype context-aware tool that support users in sending and

receiving reminders that can be associated to richly described situations involving time, places and more

sophisticated pieces of context [11]. Seiwiorek et al. describe SenSay, a context-aware mobile phone that

adapts to dynamically changing environmental and physiological states [42]. Ho et al. describe a context

aware mobile computing device that automatically detects postural and ambulatory activity transitions in

real time using wireless accelerometers [20]. These and other approaches to context aware mobile computing

make heavy reliance in sensors. For example, SenSay employs accelerometers, light sensors and microphone

to capture context and uses that to manipulate ringer volume, make call suggestions when user is idle or

provide the caller feedback on the current status of the SenSay user.

Burrell et. al implemented a location-sensitive college campus tour guide called Campus Aware that

allows users to annotate physical spaces with text notes [7]. Similarly, Abowd et. al describe Cyberguide,

a mobile context-aware tool guide that uses the user’s current location, history of past location to provide

services that “we (have) come to expect from a real tour guide” [1]. Both of these systems use location/time

3



Figure 1.2: GloBuddy, a translation tool that uses commonsense by Lieberman et. al, [25].

context to overlay relevant information in a digital map. A more general survey of context-aware mobile

computing is done by Abowd et al. [2] and Chen et al. [8].

In addition to end-user context aware systems, a lot of research has been done to make frameworks

that support context aware computing. Harter et al. describe a sensor-driven platform for context-aware

computing that enables applications to follow mobile users as they move around a building [19]. a CAPpella

is a programming by demonstration context aware prototyping environment intended for end users [10].

ContextPhone is a prototyping platform for context aware mobile application that aims to provide context

as a resource to existing applications [36]. Chen et al. describe an ontology for context aware pervasive

computing environments [9]. The ontology is called CoBrA (context broker architecture) and it models the

basic concepts of people, agents, places and presentation events in an intelligent meeting room environment.

Although the number of context aware projects seems to be rapidly increasing, questions remain about

their usefulness. Oulasvirta posits that there are only few successful applications of context-adapted HCI,

arguably because use scenarios have not been based on holistic understanding of the society, users and

use situations [35]. Barkhuus et al. show that users feel less in control when using either passive or active

context-aware applications than when personalizing their own applications [4]. Both authors discuss possible

scenarios where this perceived burden of context aware computing could be overcome.

There are a lot of projects in the field of artificial intelligence that incorporate commonsense knowledge

4



in some way. As will be detailed in section 2.3, myMap uses ConceptNet as its commonsense resource.

A typical usage of ConceptNet is demonstrated by Lieberman et. al in the implementation of GloBuddy

[25]. GloBuddy is a translation tool in a mobile device that allows “them to understand the semantic

context of situations and statements, and then act on this information”. Liu et. al use the OMCS (Open

Mind Commonsense) database to automatically generate a model of a person’s attitudes from an automated

analysis of a corpus of personal texts written by the person being modeled [26]. They discuss the theoretical

and pragmatic implications of such research to intelligent user interface design. Singh et. al describe

LifeNet, a common sense knowledge base that captures a first-person model of human experience in terms

of a prepositional representation [44].

Of the projects described above, Campus Aware and Cyberguide make use of maps in mobile settings.

There are many other specialized tools that use map in one form of other. Some new tools that use maps

as a substrate are popularly known as “map-mashups” and are detailed in section 2.4.

5



Chapter 2

Cognitive basis

2.1 Animal navigation and cognition

Humans, like other mobile animals, must learn something about the layout of their environments in order to

reliably locate food sites and other important resources, return home, or migrate between known locations.

Navigation strategies may be classified in terms of the demands they place on memory storage and cognitive

processing, independent of their implementation in a particular agent [15]. In the literature on psychology

and neuroscience, following navigation strategies have been identified:

1. Guidance. Guidance is the most basic navigation strategy in which the agent successfully travels in

relation to a perceptible beacon.

2. Landmark navigation. This navigation strategy requires the ability to remember particular objects in

the environment or vistas of a scene. The agent navigates by orienting itself to such objects or scenes.

3. Path integration. Path integration is also called dead reckoning and requires the agent to remember

a “homing vector” so that by continually moving in the direction of the vector, the agent can move

towards its target. (The target is often home, hence the term homing vector.)

4. Route based navigation. This navigation strategy involves remembering specific sequences of positions,

which may be defined as sequences of landmarks, junctions, vistas, homing vectors, turns and so on.

The agent follows the exact sequence of positions to arrive at its target. If a landmark or other

information is removed from such a sequence, the agent is lost.

5. Map based navigation. This navigation strategy involves remembering some form of survey knowledge

of the environmental layout. The agent uses the underlying geometry of a map to navigate in a complex

environment.

The above list should not be treated as mutually exclusive or exhaustive. Most animals use a combination

of strategies for navigation. Animals such as desert ants, honeybees, geese etc. often rely both on path

6



integration and route based approaches. Humans have at least two distinct navigational strategies available

to them - landmark based and map based strategies - and can switch adaptively between them [15]. Humans

generally rely on accurate landmark-based navigation, but can fall back on survey knowledge if landmarks

are absent or are perceived as unreliable. The TOUR model by Kuipers is intended to capture the multiple

representations that make up the cognitive map, the problem-solving strategies it uses and the mechanisms

for assimilating new information (in the map) [23].

2.1.1 Landmarks

Each animal needs a consistent way of identifying and organizing sensory cues from the environment -

identifying places and objects that possess threat to its existence or remembering locations that has food

in it. For humans, the environment is usually a complex urban setting. In the process of way-finding each

individual holds a mental picture of the exterior physical world, a mental image [28], that helps her navigate

through complex urban environments. Landmarks can be thought of as the components of such a mental

image - places that have meaning to the individual in the map. More generally, landmarks consist of those

features of the physical environment that have some potential value to an agent.

Using the terminology in The society of Mind by Minsky, each landmark can be thought of as being

stored in a frame. A collection of such frames is called a frame array. “We represent directions and places

by attaching them to a special set of pronome-like agents called direction nemes [33].” When we move in

space, these direction nemes are activated such that they update the internal frame arrays that describe the

external landmarks.

The word landmark is used slightly differently in this project and is explained in more detail in section

3.1.

2.1.2 Cognitive maps

The map based navigation strategy requires acquiring some sort of survey knowledge of the environmental

layout. From our perspective, two questions are relevant:

1. How is this survey knowledge built?

2. What is the nature of this survey knowledge? More specifically what is the representation that is used

for the storage and cognitive processing of such knowledge?

In humans the survey knowledge is build from (i) visual information (such as optic flow) about topograph-

ical knowledge and (ii) path integration. Topographical knowledge is thought to comprise information about

7



both landmarks and spatial relations between landmarks [30] and the processing involved in understanding

it is too complex to go into detail here. Path integration involves the estimation of one’s position within

an external frame of reference by integrating information about one’s linear and angular velocity or one’s

linear and angular acceleration (inertial navigation) to determine the distances and angles traversed, or by

measuring them directly (dead reckoning) [15].

It is not entirely clear how the survey knowledge is encoded for cognitive processing and storage in humans

but there are indications that survey knowledge might be stored in Minsky’s frame-like structures. Frames

represent what we call landmarks and our query on how survey knowledge is built and stored leads us to ask

two more related questions:

1. How many and what type of landmarks should the agent remember?

2. How should the geometric properties of the landmarks and the spaces between them be remembered?

No conclusive answers have yet been found to these questions although progress is being made both

in psychology and neuroimaging. The brain areas that support navigation in humans (and animals) have

been linked to allocentric (world-centered) representation of locations in the physical world. These allo-

centric representation of locations, also called cognitive maps, are related to spatially tuned neurons in the

hippocampal regions of the brain [29].

The term cognitive map was first coined by Tolman, who defined it as a representation of the environment

which indicated the routes, paths and environmental relationships that an animal uses in making decisions

about where to move. Although the anecdotal reports - of rats escaping from mazes and running directly to

the goal - that convinced Tolman that rats had cognitive maps were later discredit, other researchers have

maintained that some animals possess cognitive maps. A very good summary of differing views on cognitive

maps can be found in Bennett’s paper on cognitive maps [5].

2.1.3 What aspects of maps are important?

The importance of landmarks and navigation strategy in the cognitive abilities of animals provides valuable

insights on how maps should be designed:

1. A map should be landmark based meaning it should display those locations and objects that are useful

to a user.

2. The map should match, as closely as possible, the cognitive map of the user. The better the match,

the less cognitive stress it puts on the user in interpreting it.
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Figure 2.1: Titled: Rock art - map. Redrawing of the oldest known plan of an inhabited site, Bedolina, Val
Camonica, Italy, circa 1200 BC Source: [3].

3. Certain aspects of the physical world, for example the direction between different landmark, should be

preserved in a map since navigation strategies as path integration rely on accurate homing vectors.

2.2 Overview of maps

According to the definition formulated in 1987 by the late Brian Harley and David Woodward, “maps are

graphic representations that facilitate a spatial understandings of things, concepts, conditions, processes, or

events in the human world” [3]. In this section, we will visually explore a few maps and draw some lessons

on what should be included in myMap.

2.2.1 Maps before the age of technology

As soon as humans learnt to scribble things in stones, they started drawing their surroundings in some detail

as shown in figure 2.1. These “rock art” have been interpreted variously and some even doubt that the fields,

springs and interconnecting paths represented an actual landscape [3].

If we assume that these maps were drawn as representation of the physical, cultural or social landscape

of a place, then they exhibit some interesting characteristics. First, these maps include animals, humans and

non-animate objects in the same map. For example in the figure 2.2 we can see animals as deers and dogs,
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Figure 2.2: Titled: Diwali celebrations at the royal palace at Kotah, Rajasthan. This map and many
others like it were commissioned by kings for decorative, commemorative and utilitarian purposes, circa 1600
Source: [3].

royalty and the common folks, trees and garden and building and roads. Although drawn in an awkward

perspective, both figure 2.1 and figure 2.2 are drawn in so simple a manner that any novice user can look at

the map and understand important aspects of the landscape.

These maps from the past try to convey more than just location information - with one glance at these

maps, the user can infer social relations, agricultural behavior etc. of the actors being depicted in the map.

Moreover, with maps like those shown in figure 2.3 and figure 2.4, the authors of the map are not making

objective, quantifiable statements but are trying to portray their subjective feeling towards locations and

people.

2.2.2 Maps in the age of technology

As societies got more organized into city-states, more and more effort was put into demarcating physical

space. With the wave of colonization, the need for accurate maps for taxation, for battle planning and

navigation grew stronger. Figure 2.5 shows the map of India produced by the British empire in preparation

of colonization, figure 2.6 shows India after colonization and figure 2.7 shows India after the British left.

Accurate political map in modern times, it seems, are a by product of wars.

However, in this project we are concerned not with political maps of the world but with local maps -
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Figure 2.3: Titled: Africa. The Africa shown in this map forms a part of an eclectic world map from India,
circa 1700. Source: [3].

Figure 2.4: Titled: Panoramic Map of Buddhistic India. This is a map drawn by Hashimoto Sadahide in
1860 depicting his conception of India Source: [39].
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Figure 2.5: Titled: A description of East India. This is a map drawn by William Baffin and Thomas Roe of
the Mughal empire in India, circa 1600 Source: [3].

Figure 2.6: Titled: Hindoostan. This is a map of India drawn by James Rennell for East India Company,
1778. Source: [3].
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Figure 2.7: Titled: Map of India. This is a modern political map of India. Disputed regions have been shown
as parts of India. Source: [21].

Figure 2.8: Titled: Google map. This map shows the location around the author’s university campus shown
in figure 3.1. Source: [17].
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Figure 2.9: Titled: Satellite map. This map shows satellite image of the same location as seen in figure 2.8.
Source: [17].

maps that might cater to the needs of an individual. Figure 2.8 shows a popular online digital map from

Google [17]. The map is highly accurate and many “mashups”, a term to be described in later chapters, use

it as a substrate. A satellite image of the same location is shown in figure 2.9 and a hybrid version is shown

in figure 2.10.

Although highly accurate, the digital maps as shown in figure 2.8 lack a few key features that old maps

provide:

• They do not have location specific information. Because most digital maps are often used for naviga-

tional purposes, they don’t show much else than roads. Since most cities are structured in a grid-like

structure, their digital maps end up looking featureless rectangular grid.

• Landmarks, historical or otherwise are absent in modern maps. As discussed in the earlier section on

cognitive maps, landmarks play a crucial role in navigation - but digital maps, despite posing purely

as navigational maps, don’t have them.

• People, animals, trees etc. are missing in the landmark. One could argue that the hybrid map of

figure 2.10 does have greenery and roads shown at the same time, the old maps do a much better job

of showing social information in maps. In fact, if we treat maps as being representations of physical

spaces, the hybrid map doesn’t count as a map. If definitely is a high tech picture with overlaid roads,
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Figure 2.10: Titled: Hybrid map. This map shows information of both figure 2.8 and figure 2.9. Source:
[17].

but not a map.

The section on landmarks, section 3.1 details the components of the map of this project.

2.2.3 Sketch maps

If landmarks are represented as frames in our mind and the directions are represented by direction nemes,

what kind of maps would most closely match our cognitive maps? Figure 2.11 shows a Nineteenth century

Korean map that shows real and imaginary places as encircled text. One of the text represents the “Land of

the white people” and another represents “Land of Japan” and yet another “Land of refined elegant ladies”.

Based on both mythology and facts, this map is “accurate” only by a large stretch of imagination. However,

its scientific inaccuracy should not be equated with its usefulness. (After all, it would indeed be nice to have

a “Land of refined elegant ladies” in any map!)

Sketch maps like those shown in figure 2.12 or figure 2.11 which fail to pass the scientific accuracy test

can still be useful if they pass the following criteria:

• The shape of the landmark, weather it be a photorealistic painting or a text with a circle around it,

is important to the user to the extent that the user is able to form a mental model of the object it is

trying to portray.
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Figure 2.11: Titled: Ch’onhodo: ‘All Under Heaven’. This map from the year 1800 maintains China at the
center of the known universe and shows both real and mythical places. Source: [3].

Figure 2.12: Sketch map of a portion of the university campus of the author.
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• The direction of a landmark with respect to another is more important to be displayed accurately than

the distance between them.

• There are certain landmarks that are universally recognized by a large group of people and inclusion

of them helps in sketch maps.

As a form of representation of maps, sketches play an important part to emphasize certain aspects

of the landscape and deemphasize others. A central concept for cognitively adequate representations of

environmental knowledge is that of a schematic map [22]. In this project, we look at how sketch maps can

be used to intentionally simplify complex landscapes and reduce them into collection of landmarks that can

be displayed in a map. It is our hope that such maps will put less cognitive load in the user than traditional

maps while delivering richer content to the user.

2.3 Commonsense

“Common sense is the collection of prejudices acquired by age eighteen.” - Albert Einstein

The word commonsense is often thought of as sound judgement that is not based on specialized knowledge.

It is commonly assumed that as people grow older, they accumulate myriad of facts, called commonsense

facts, that allows them to perform some sort of default reasoning. In this section, we will investigate

commonsense in detail as it relates to myMap.

2.3.1 Overview of commonsense

We can get soup in a Chinese restaurant. A gym is a place where people go to exercise. There

are computers in an office. Children play in parks.

Each of the short sentences in the last paragraph is presented as a fact - and yet, in a strictly mathematical

sense, none of them qualifies as a fact. We may not get soup in a Chinese restaurant and some offices do

not have computers in them. To assert that we get soup in a Chinese restaurant as a mathematical fact,

we need to define what soup is and what eateries qualify as Chinese restaurants. Unless we strictly define

millions of other facts, the sentences presented above can never be treated as mathematically true.

A positivist outlook of the world requires that sentences like those presented above be objective and

quantitative in nature allowing for precise mathematical manipulation. In contrast, phenomenological the-

ories are subjective and quantitative in orientation. Phenomenology turns analytic attention away from

the idea of a stable external world that is unproblematically recognized by all, and towards the idea that
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the world, as we perceive it, is essentially a consensus of interpretation [12]. Thus, if all of the people I

know agree that a certain restaurant is a Chinese restaurant and if all believe that one can get soup in that

restaurant, then the sentence “we can get soup in a Chinese restaurant” can be treated as a useful fact.

There are a lot of other facts as the ones presented above that are universally treated as true - a consensus

of interpretation, if you will - that are collectively called commonsense facts. Minsky in his book The Society

of Mind suggests that as we grow older, we learn generalized facts about the world around us [33] and learn

to use them for default reasoning tasks [37]. A more in-depth analysis of these commonsense facts can be

found in Minsky’s new book The Emotion Machine [34]. Commonsense facts are rarely without exceptions

and can often be wrong but their usefulness (and what interests us most) stems from the fact that they

represent a consensus of interpretation among a large number of social actors. Below, we introduce two

commonsense related projects, ConceptNet and WordNet, that are used in myMap.

A lot of research has been done under the commonsense umbrella. One of the earliest papers in the

field was written by McCarthy [31]. Douglas Lenat’s Cyc was the first large-scale attempt to catalog and

codify commonsense knowledge [24]. The Cyc project tries to formalize commonsense knowledge into logical

sentences so that (variations of) predicate logic can be used to reason about the world around us. Each

commonsense fact is entered by individual experts in unambiguous logical formulations in a specialized

language called cycL.

In contrast to hard-coding commonsense knowledge in predicate logic by experts, the Open Mind Com-

monsense (OMCS) database collects commonsense facts from the general public [43]. Internet users with no

special training can enter a commonsense fact in the OMCS web page in natural language (or alternatively

using a fill-in-the blank approach). The OMCS database is then mined for commonly occurring concepts to

form a semantic network of commonsense knowledge called ConceptNet [27]. ConceptNet is provided as a

freely downloadable package with interfaces for language as Java.

ConceptNet has a network structure with concepts as nodes and various relations as edges between nodes.

Each concept could be a single noun or a noun phrase and the relations between concept nodes are grouped

under various thematic. The LocationOf relation between two concepts for example illustrates the spatial

relationship between two concepts.

In addition to ConceptNet, another relational semantic network called WordNet is used for this project.

WordNet is a lexical reference system whose design is inspired by current psycholinguistic theories of human

lexical memory [32]. English nouns, verbs, adjectives and adverbs are organized into synonym sets, each

representing one underlying lexical concept. Different relations link the synonym sets. WordNet’s repertoire

of semantic relations consists of triplet of “synonym”, “is-a” and “part-of” relations. As in ConceptNet,
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Figure 2.13: An excerpt from ConceptNets semantic network of commonsense knowledge. Compound (as
opposed to simple) concepts are represented in semi-structured English by composing a verb (e.g. drink) with
a noun phrase (coffee) or a prepositional phrase (in morning).

noun phrases are represented as nodes in WordNet but unlike ConceptNet, the relations between the nodes

are optimized for word similarity determination.

2.3.2 Commonsense knowledge for maps

As discussed in the cognitive maps section earlier, we don’t yet have a clear understanding of how places

and things are represented in our brains. Although it is not yet proven, it is plausible that all humans share

some basic “vocabulary” that describes our interactions with spatial entities. It is also possible that different

individuals represent spatial entities with similar language - based on the entities’ form, function or location.

It is thus likely that two city dwellers will describe a public park in similar language. The individual

words they use will be different but the overall intent would be the same. Both would probably include major

descriptions of a park - that it has trees, benches and green grass - and minor descriptions are likely to vary

widely. In fact, the majority of the common elements in their description would be what we commonly refer

to as commonsense facts about a public park.

Landmarks are described in more detail in section 3.1 but in short, we can treat each building, park etc.

in a map as a landmark. Given commonsense facts about various landmarks and some natural language

description of a previously uncategorized landmark, we can categorize new landmarks as being a building,
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park, office etc. This process allows for automatically assigning a landmark to be in categories like restaurant

or library or park etc.

Additionally, the commonsense approach to map allows us to infer relationships between different land-

marks and calculate conceptual nearness between landmarks. For example, a Chinese restaurant is concep-

tually nearer to a burger drive-through than it is to a children’s playground because a Chinese restaurant

is functionally similar to a burger drive-through. Conceptual nearness is discussed in more detail in section

3.2.2.

2.3.3 Inherent inaccuracy

We almost never find rules that have no exceptions and commonsense knowledge, being a large set of

generalized rules itself is no exception. The commonsense fact that “birds can fly” is useful only when

the bird in question is not a penguin or an ostrich and is alive, has functional wings, is not confined in a

cage, doesn’t have its feet stuck in cement, or has undergone no dreadful experience that has rendered it

psychologically incapable of flight [33]. Any system that uses commonsense facts, including humans, must

take into account this issue of inherent inaccuracy of commonsense knowledge.

Continuing our example of Chinese restaurants and soup, it is possible that there exists a Chinese

restaurant somewhere that indeed doesn’t serve any soup. However this shouldn’t prevent us from using

the commonsense fact that “we can get soup in a Chinese restaurant.” If we had only a limited number of

commonsense facts about each landmark, then the inaccuracy inherent in them could adversely affect our

calculations. However, when large numbers of facts are involved, the exceptions don’t play a significant part

in the final result.

Another source of inaccuracy arises from inaccurate input description of landmarks. As detailed in section

3.2.2, a few paragraphs of natural language text is collected for each landmark in the map from the internet.

Some of the information in these texts might be factually wrong. Others might have disproportionate

descriptions of particular features of the landmark instead of an overall description of the landmark. For

example, suppose we have some text that purports to describe a gym - but instead of details about the

facility, the majority of the text talks about a cafeteria inside the gym. In this scenario, each calculation

that pertains to that gym is going to be heavily influenced by the description of the cafeteria. This source

of error is much harder to trace and eradicate.
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2.3.4 Speculations on personalized commonsense

Commonsense facts are generalized rules and most members of a society often share a wide variety of such

facts. It is in fact these shared common beliefs that make many human enterprizes as communication

possible. However, each individual with a unique learning history must have a unique sense of what counts

as commonsense knowledge. How can a map application respect this individualized sense of commonsense?

Although myMap doesn’t attempt to personalize commonsense, one approach would be to assign different

confidence level to each commonsense fact and see if those match with the user’s confidence level. This

thought exercise is carried out in more detail in section 3.3.

2.4 Context

2.4.1 Maps as tools

A saw is used to cut wood. A pen is good for writing. A thesaurus can help find synonyms.

Each of the above tool could be used differently - it is possible to use a saw to cut meat or a thesaurus

to find the meaning of a word - however, such usage will be inefficient at best. The form and function of

any tool are closely related. The original design of a pen and subsequent re-designs has made it a superb

tool for writing. For any other function, a pen is useless. Even tools like axe that have evolved through long

periods of time work best in niche application domains. Thus, when we think about maps, we have to ask,

“What is the function that a map as a tool serves”?

As discussed in the historical overview of maps in section 2.2, maps in modern times have primarily been

used for navigational purposes. The task at hand is to find directions and the tools are maps. Road-centric

maps like google maps [17] or those from the early twentieth century have been designed with navigation

in mind. Hence, it is no accident that modern maps are limited in their usability outside the navigation

domain.

myMap attempts to re-think maps. What functions can maps play in social settings and what forms

would they need to take to fulfill those functions? What restrictions do medium of representation - a stone

slab, a map-book, a desktop client or a mobile phone - present? How are static maps different than dynamic

maps like myMap? Efforts to answer these questions will allow us to design better maps.

Our spatial behavior is a huge part of our identity. Each day, we choose to go to certain restaurants or

certain parks or choose to walk one route over others. There are temporal patterns in our spatial behavior -

one may be at a gym from 5 pm to 6 pm each Monday and Friday of the week. And there are anomalies in
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our spatial behavior - once in a blue moon, we choose to go to see a movie or sleep over at a friend’s place.

A map as a tool would need to respect this identity that is part of each of us - our spatial identity.

As a personal tool, a map should help us better understand our own spatial identity and show us ways

to diversify and augment it. If one so much loved Chinese food that they went to only Chinese restaurants

during lunch, it would perhaps please the user if the map showed more Chinese restaurant locations. Or

perhaps for a change, the user would be interested in trying some places that served something close to

Chinese food. As another example, in a map aimed at children, parks and playgrounds would be nice to

display; adult movie stores would be a bad idea.

As a social tool, a map should help us connect with the spatial identities of our friends and family

and show us ways to expand our circle of influence. If one of our friends is in a coffee shop and if we are

nearby, it should show the coffee shop in the map - perhaps, by accident we will chance upon this friend.

The map should also display landmarks that our social circles frequent - they later can become important

conversational topics. However, this sharing of social data should be respectful of the privacy issues involved.

There are many recent map-based applications that are popularly called “map-mashups” that try to

address some of these issues. For example, Gawker Stalker is a google map mashup that shows celebrity

location in real time [16]. Users can email the location of celebrity sightings to Gawker Stalker and the

celebrity location is updated in an interface built upon google map. There are more map mashups than that

can be listed here but a comprehensive list can be found at googlemapsmania blog [18].

Due to technical difficulties of building spatially accurate map in large scale, most of the mashups use

an existing digital map as their substrate. This “feature” seriously constraints any creative re-thinking of

maps. However, by not trying to show directions, celebrity sightings and rainfall data in the same map,

mashups are a step in the right direction - they work as tools that are expected to solve particular problems.

myMap expands on this one-task approach of mashups to build a social map. Additionally, since myMap

is a small-scale experiment, a proof of concept if you will, it is not limited by the constraint of having a

digital map as its substrate. As described in section on sketch maps, section 2.2.3, and in the implementation

chapter 4, myMap explores a new sketch-based substrate for the map.

We want myMap to be a map that respects and enhances our spatial identity. However, it is not entirely

clear in what scenarios users will use such a map and to solve what kind of problems. If the relative success

of map mashups is any indication, users do want to know more about their own and other people’s spatial

behavior. Also, many people are interested in discovering landmarks of interest that others have visited and

likely to use a map like myMap both in the desktop and mobile setting.
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2.4.2 User Context

I drink tea early in the morning every day. Jane likes to go hiking on Sundays. If I go early, I

can meet Mike at the gym.

As alluded in the previous section, our spatial identity consists of our spatial, temporal and social be-

havior. However, to capture every spatial, temporal and social behavior of a human would be a monumental

task - with methods unclear to isolate behaviors that would be useful for projects like myMap. Instead of

trying to capture all sorts of behaviors, myMap focuses on some aspects of the spatial, temporal and social

behavior useful for map creation/display. We will call these behaviors the context of the user. As will be

explained in the next section, researchers in the field of context aware computing have used the word context

very differently.

Everyday events can be visualized as sequences of activities done in different spatial, social or temporal

settings. Spatial and temporal settings give rise to location/time context indicating where a particular user

was at different times. Social setting comprises of a user’s friends, family and social acquaintances and their

location/time context comprises the social context of the user.

This simple formulation of a users’ context is quite easy to capture. Mining the GPS location data of

the user at different places can capture a user’s location/time context. Mining the GPS location data of her

friends, family and social acquaintances can capture her social context. In myMap, in the interest of time

no actual GPS data have been collected - instead the user’s location are hand-recorded with accurate time

stamps and the location of the user’s friends are simulated for various times.

The formulation of context as presented above perhaps seems simplistic if one were to look at it from

a representational point of view. As a representational problem, the central concern with context is with

the questions, “what is context and how can it be encoded?” [12]. The answer to both those questions is

indeed answered poorly by the above formulation. However, we are not interested in context itself - we

are interested in having an interactional model of context that treats context as an outcome rather than a

premise to activities.

myMap is inspired by this alternative view of context put forward by Paul Dourish. Dourish [12] puts

forward following four characteristics, which form the basis for our understanding of what context, entails:

1. Contextuality is a relational property. Instead of treating context as information, context should be

treated as a property that holds between objects or activities.

2. The scope of contextuality is determined dynamically. We cannot establish context apart from or in

advance of any activity.
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3. Context is an occasioned property. Context is not stable but rather is particular to different settings,

different instances of action and particular to parties to that action.

4. Context arises from the activity. Context is actively produced, maintained and enacted in the course

of the activity at hand.

2.4.3 Context awareness in literature

Traditionally, context has been thought of from a positivist point of view with emphasis on accurately

defining and encoding it. Positivist theories derive from rational, empirical, scientific traditions that seek

to reduce complex observable phenomena to underlying idealized mathematical descriptions. Thus, it is

not unusual to find context being defined as “location, identity, environment, and time” [38] without much

regard to social actors and their activities.

Context in literature is often thought of as consisting of categories [41]:

1. Computing context, such as network connectivity, communication costs, nearby resources etc.

2. User context, such as the user’s profile, location, people nearby and social situations.

3. Physical context, such as temperature, noise levels, lighting etc.

4. Time context, such as time of a day, week, month, etc. [8].

Abowd et al., who perhaps provide one of the most popular definition of context in the literature define

context as “any information that can be used to characterize the situation of an entity. An entity is a

person, place, or object that is considered relevant to the interaction between a user and an application,

including the user and applications themselves” [2]. This idea that context consists of a set of features of

the environment surrounding generic activities and that it can be modeled, encoded and put into software

underlies following four assumptions about context [12]:

1. Context is a form of information - it can be known, modeled, encoded etc.

2. Context is delineable - what counts as context is known prior to execution of activities that give rise

to the context.

3. Context is stable - the determination of the relevance of any potential contextual element can be made

once and for all.

4. Context and activity are separable - activities happen within contexts but the activities can be defined

and described separately from the context in which they happen.
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Context aware computing seems to have arisen in response to the rigidity of traditional interactive

systems. Context is often used, as in the case of myMap, to dynamically tailor the behavior of the system

in response to changing environments. However, by treating context as a representational problem, the

positivist formulation of context is more concerned with modeling and encoding context than responding to

immediate human needs. It is often assumed that most users of a context aware system will face consistent

interactional problems, even after repeated usage. Moreover, as context is treated as a static property of

the world divorced from all activities, it does not evolve. Most criticism of popular context aware systems

is based on this positivist attitude towards context and is humorously illustrated by Thomas Erickson [14].

The alternative phenomenological formulation, which treats context as an interactional problem, puts

the human element into context awareness. As described in the previous section, context depends on the

system’s interactions with the user and as will be discussed in section 3.3, there exist possibilities for evolution

of context with user activities.

2.4.4 Context awareness in maps

With the formulation of context as static properties of objects in the popular literature, it is hard to see how

context can be directly incorporated into maps. Sensor data can perhaps be overlaid in a map - making its

description richer over time - but this approach is as divorced from the user as are traditional maps. Given

our formulation of context as a relational property with the representation itself consisting of nothing more

than location/time data of the user and her social acquaintances, how can we re-think maps?

In the section 2.4.2, we said that context was actively produced, maintained and enacted in the course

of activity at hand. When a user goes to a coffee shop at noon, for example, through her activity, she is

producing “context” - her location/time data can now be treated as having some value in defining her spatial

identity. Furthermore, if she goes to coffee shop every day at noon, this sustained activity produces another

kind of “context” - one of the patterns in her spatial behavior, namely that she goes to a coffee shop around

noon every day, is known. Context is not only produced and maintained but is also enacted in the course of

an activity. We know that as the day passes, around noon, the user will enact the context that refers to her

going to a coffee shop. A map capable of showing a user’s spatial identity would display that coffee shop in

some form around noon time.

myMap is a dynamic map, continually updated to reflect the user’s past habits and hint possible future

actions. As the location and/or time of the user changes, the map updates itself - hiding landmarks that

are not relevant to current context and showing new ones that are. Details on how the map is updated can

be found in the section about nearness in chapter 3.
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Chapter 3

Map Components

3.1 Landmarks

As was discussed in the section on cognitive maps, humans (and animals) often use some locations as

reference points during navigation or social interaction. These locations usually have some salient features

associated with them that is universally recognized by a group of people. But more often the salience of a

landscape is evaluated and used by each individual differently. In this chapter we give a tentative definition

of landmark as they apply to maps and ponder on what (and how many) landmarks should be displayed in

a map.

3.1.1 What is a landmark?

A landmark is often defined as a prominent identifying feature of a landscape. When people talk about

landmarks in general, they usually mean historical buildings or tourist destinations. We use the term

landmark more loosely to refer to locations that has some significance to the user of myMap.

Figure 3.1 shows a part of a regular map of a university campus. Such maps are better designed than

online road-based maps but still are crowded with buildings and roads - indiscriminately showing all buildings

to all willing to look. If one were looking for a specific building, it would be almost impossible to spot it

without looking at an index.

What would happen if we started with a regular map as shown above, and one by one removed all those

buildings that the user has never been to, remove all those roads the user has never traveled and put in

some locations that the user frequents, yet are absent in the map? We would invariably end up with a much

less crowded map - a map that would display only those buildings, roads, parks, pathways etc. the user was

concerned with. These would be our ideal landmarks - these are indeed the prominent identifying features

of a complex landscape - as seen through the eyes of the map user.

Often, maps are used not to look at places we already know but to explore places that we would want

to know. The crowdedness of a map is reduced by not showing any buildings that the user has never been
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Figure 3.1: A small portion of the campus map of the author’s campus.

to but in doing so, we also fail to impart any new information to the user. The usefulness of a building in

a map is determined not only by weather a user has previously been there but also by weather she would

want to be there in the future. Thus, our definition of landmark includes all those locations that a user has

been to and also those that she would want to go to. In short, landmarks are those locations that are of

interest to the user.

3.1.2 Personalized landmarks

Each of us travels different routes, are affiliated with different buildings and visit different places at different

times. All of this data can be collected in an experimental scenario that has a user carrying a mobile GPS

device capable of recording the location and time information throughout a period of time. A wealth of

information can be found from GPS information as described by Eagle et. al [13] but since we are interested

in only very basic location/time information, we don’t make usage of a GPS device. Instead, we hand-record

the user’s location at different times resulting in raw data as presented in sub section 6.1.1.

A week’s worth of such data for the author is collected and is presented in the appendix. Equivalently,

with more time, we could have used a GPS unit to get exactly the same data about the author’s location at

different times.

The list of landmarks that appear in such data is unique to particular users. Using concepts of nearness
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as described in 3.2, we could find other landmarks that are related to this list. The original list of landmarks

from the raw data and the related list of landmarks are personalized in the sense that they reflect the spatial

identity of the user.

3.1.3 Universal landmarks

There are a few landmarks that are common to everybody how belongs to particular groups. For example,

the computer science building will be known by most, if not all people who study computer science. We

call these landmarks that are common to a large group of map users universal landmarks. Inclusion of such

landmarks in a map helps different people from a group find a shared point of reference when talking about

their personalized landmarks.

It should be noted that some universal landmarks are group specific. Thus, a history student might not

know a computer science lab building and its inclusion in her map would serve no purpose. However, most

people living in a locale share some landmarks that are popular destinations. In a university setting, for

example, the quad or the student union building are often universal landmarks across a large number of

people irrespective of the smaller groups they belong to.

3.1.4 Landmarks in maps

Given that current maps are crowded with too many buildings (or roads etc.), a natural question to ask is

what can we do to reduce the crowdedness - which buildings do we keep, which buildings do we discard from

the map? With our definition of landmarks as those locations that are relevant to the user, we can perhaps

reduce the crowdedness of the maps by displaying only landmarks in the map.

However, the list of landmarks may itself be too large to display in a regular map. If a user has a list

containing a hundred landmarks, then it is impossible to neatly display all these landmarks in a regular A4

size paper. We need some structured way to limit the number of landmarks displayed in any map.

Often, when humans draw sketch maps, the size of the maps and the number of landmarks in them

depends greatly on the medium of representation. Thus, if the map is being drawn on a large black board,

many landmarks can be put and if it is drawn on a dollar bill, only two or three landmarks make it to the

map. For digital maps too, the medium of representation is important when deciding how many landmarks

to display. In a desktop computer, perhaps five to ten landmarks, depending on the screen resolution may

be comfortably displayed. In a mobile device with limited screen size, perhaps three to five landmarks could

be displayed without the map being too crowded.

Finally, what exactly are the kind of landmarks we need to display in a map? Universal landmarks, as
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a common reference point for a large group of people are useful to display in any map. Personalized list of

landmarks should also be appropriately displayed in a map. In addition, as we discussed in the section in

context, a map should display all those landmarks that are relevant to the user’s context. Thus, if it is lunch

time, then the user’s context usually involves finding food. Restaurants of the type the user visits may be

displayed in such scenarios.

3.1.5 Mining data about landmarks from the web

In a traditional map as shown in figure 3.1 all landmarks are represented with a polygonal shape and a name.

The information inherent in these maps are inadequate for us to differentiate between a coffee shop and a

fine arts theater except perhaps to infer functionality of a landmark from the rudimentary information that

we can glean from the landmark’s name. Thus, before we can display a restaurant in response to the user’s

context, we have to positively identify a landmark as a restaurant.

In a university campus setting, with limited number of landmarks, a viable approach to identifying

landmarks is to manually tag them. Thus, a library building can be tagged with keywords like “books”,

“library”, “study rooms” etc. A few map mashups called “geo-taggers” attempt to do exactly this - they

overlay tagged location information on traditional digital map in the hope that searching for landmarks will

be efficient.

While these attempts of tagging may work for a limited number of landmarks, it is virtually impossible

to tag large number of landmarks manually. In an attempt to find an automated solution that allows for

discerning between two landmarks reliably, we turn to the internet and its vast collection of location-specific

information. However, location-specific information in the web, as much of the web itself, is unorganized -

making it nearly impossible to organize landmarks in clear-cut categories. Landmark-specific text are found

at multiple sites, often with conflicting information about the landmarks themselves, making the task of

creating categories even trickier.

For this project, we look at about thirty landmarks and collect information about them from various

sources with no particular regard to the accuracy or quality of the data. All of the information collected

is written in natural language by various authors. For example, information for most restaurants are taken

from restaurant reviews written by novice reviewers. Some of the descriptions of academic buildings was

retrieved from Wikipedia and some were collected from notes from different department websites. Overall,

the data collection process and the data itself reflect what one would typically get if one were to collect these

data using an automated algorithm from the web.

The menu had typical Chinese and Thai dishes. I was curious about the almond chicken. They
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also have some ho fun, pad Thai and noodle dishes. Yes, the curry chicken is there also. I will

have to try that sometime. The place is bit pricey than Sing Ma. I guess they need few weeks

to settle down. I would give it another try in a week or so.

The above paragraph shows a typical paragraph of data - the text describes a restaurant and is taken

from a restaurant review done by a novice reviewer. As can be seen, the text collected from the web is

highly unorganized and often it is hard to see what, if any, location specific information such text contains.

However, even with unorganized text as above, we can find basic relationship between different landmarks

as discussed in the next section.

3.2 Nearness - concepts and calculations

In a dynamically changing map, what are the landmarks that we should display? The previous section

hinted that we should display universal landmarks and personalized landmarks that are relevant to the

user’s context. In this section, we will explore how we can reliably detect universal landmarks and find

landmarks that are relevant to a user’s context. We will see that the landmarks that are finally shown in

the dynamic map are related to each other by the concept of “nearness”.

Two landmarks are said to be “near” one another if

• They are spatially near to each other,

• They share the same functionality,

• They are visited by the user at around the same time or,

• They are visited by user’s social circle.

Nearness is not a quality of a single landmark - it is instead the relationship that exists between two

landmarks. The formulation of the concept of nearness allows us to put numerical values to the commonality

between two landmarks in the spatial, conceptual, temporal and social dimensions. The next four sub sections

describe the four types of nearness and the last two sections describe how the nearness calculated can be

used to display relevant landmarks in a map.

3.2.1 Spatial nearness

Suppose a user who is at her office currently has a choice of going to one of four identical coffee shops in

the mid-day afternoon. These coffee shops are located at a distance of fifty, hundred, five hundred and a
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thousand feet away from the user’s office. All things being equal, the most likely coffee shop the user will

end up going to is the one nearest to her office.

We can model the user’s behavior of going to the nearest coffee shop by introducing the concept of

spatial nearness. The spatial nearness between two landmarks is inversely proportional to the Euclidean

distance between those landmarks. Of course different users have different preferences resulting in different

willingness to go to coffee shops that are farther away. Thus, a proportionality constant of α is required to

model this preference.

For two landmarks Li and Lj , with spatial coordinates of (xi, yi) and (xj , yj), we have spatial nearness

Sij as,

Sij =
αij√

(xi − xj)2 + (yi − yj)2
(3.1)

It should be noted that the constant α doesn’t accurately model user preference over time since a user

might be more willing to travel the distance if it was a nice day than if it was hot and humid. Modeling this

user behavior is much more complex and is not attempted in this project.

3.2.2 Conceptual nearness

In the previous section, we put the user to the hard task of choosing between four identical coffee shops.

In real life these tasks are even harder - coffee shops are rarely identical. Sure, all coffee shops sell coffee,

perhaps most have some sitting spaces but similarities end there. Some are sparsely furnished large rooms

with abstract art painted over walls - soft melodies and fresh smell of certain Jamaican herbs fill the air.

Others overflow with aristocracy - leather couches, flower vases and heart shaped chocolate fudge decorate

the interior.

However, even with these differences between coffee shops, a coffee shop is functionally much more similar

to another coffee shop than it is to a jewelry store. All coffee shops serve some “commonsense” function like

serving coffee. This can be modeled as conceptual nearness with the nearness between two landmarks being

directly proportional to their functional similarity.

A priori, we do not know the function that any of the landmarks serve. What we have instead is some text

written in natural language associated with each landmark. No guarantees are made about the accuracy and

relevancy of such text - hence we should not expect to extract precise function for any landmark. Attempts

to categorize the landmarks into clear cut groups as restaurants and parks are clearly futile.

31



In this context, we need a more robust way to find conceptual relationships between landmarks. The

method needs to be accurate to the degree of being able to distinguish between functionally related and non-

related landmarks. Since we are not attempting classification of landmarks, we do need to know predefined

characteristics of landmarks. All we are interested is in knowing how similar one building is to another

conceptually.

As an example, consider two landmarks and suppose that the text associated with both contains the

word chicken. Just with one word, we are already able to draw some inferences about the relationship

between these two landmarks - both are probably related to food. Direct match of keywords in text is a

very straightforward way to gauge the relationship between two landmarks.

Care should be taken to not include commonly occurring words as for, the etc during matching. In this

project, we only consider noun phrases for the direct match of keywords. However, each noun phrase itself

can have multiple senses with cross-sense match providing us with ambiguous results. For example, the

word chicken has four sense as a noun phrase - as meat, as fowl, as a person who lacks confidence and as

a foolhardy competitor. Comparing across senses will result in noisy results. Fortunately, only the first or

second sense of a word is often used in casual writing. For this project, we only look at the first sense of a

noun phrase.

Direct keyword matches are hard to come by. But variations of a word are often used to describe similar

things. For example, roaster and chicken describe almost the same thing. To account for cases as these, it

will be fruitful to find synonyms and hyponyms of keywords.

A hyponym is a word whose extension is included within that of another word. For example, the first

five hyponym of the word chicken are broiler, capon, fryer, roaster and spatchcock. A broiler is flesh of a

small young chicken not over two and half pounds suitable for broiling. Similarly, a spatchcock is flesh of

chicken split down the back and grilled.

We usually call the set of hyponyms of a word, as given in the example above, its first order inherited

hyponym. If we were to find hyponyms of all the words in the first order inherited hyponym, then the

resulting set would represent the second order inherited hyponym of the original word. For example, roaster

is a hyponym of the word chicken and the noun phrase oven stuffer is a hyponym of the word roaster. Thus,

the phrase oven stuffer would be an element in the second order inherited hyponym of the word chicken.

Third order inherited hyponyms are similarly defined.

Given original text Textj for landmark Lj , we can find out the sets of its noun phrases, the synonyms

of the noun phrases and first, second and third order hyponyms. The chapter on implementation explains

how this is exactly achieved using WordNet. The four sets are:
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1. Noun phrases of text of landmark.

Set1j = NounPhrase(Textj) (3.2)

2. Synonym set of the first set.

Set2j = Synonym(Set1j ) (3.3)

3. First order hyponym of the first set.

Set3j = Hyponym(Set1j ) (3.4)

4. Second and third order hyponym of the first set. To get the second order hyponym, we just get the

hyponyms of the first order hyponym. To get both the second and third order hyponyms, we get the

hyponym of both the first and second order hyponyms.

Set4j = Hyponym(Set3j )
⋃

Hyponym(Hyponym(Set3j )) (3.5)

The reason we create four distinct sets instead of lumping all keywords, their synonyms and hyponyms

into one set and doing a comparison matching is we want to assign different weights to matches between

different sets. If there is a direct match between the noun phrases of two landmarks, it is registered as having

more influence than match between third order hyponyms of the landmarks.

Suppose we have two landmarks Li and Lj then we can create Setyx where x = i or j and y = 1 through

4 as described above. We will use values βy
ij to weigh the number of matches between the set Setyi and Setyj .

The value of conceptual nearness Cij is then:

Cij =
4∑

y=1

βy
ij ∗ Size

(
Setyi

⋂
Setyj

)
(3.6)

The match using keywords, synonyms and hyponyms still falls short of capturing the full location spe-

cific information about different landmarks. For example although the words chicken and french fry both
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refer to food products, we will get no matches between these words or their synonyms or hyponyms. The

commonsense fact that chicken and french fry both relate to locations as restaurant can be inferred from

a commonsense database. As explained in the section on commonsense, the LocationOf relation in Con-

ceptNet provides commonsense locations of different objects. For example, the LocationOf relation of the

word chicken consists of at dinner, at fast food restaurant, egg, in freezer, in oven, in pizza. The LocationOf

relation of the word french fry consists of at fast food restaurant and in fast food restaurant.

As can already been seen from the example in the last paragraph, the commonsense database doesn’t

have very robust LocationOf relation for every word. Moreover, some of the relations that are present are

of little value - the “fact” that chicken can be found in an egg is not very useful, if not simply wrong.

Despite these shortcomings, a commonsense approach will definitely improve our conceptual nearness

calculations. Thus, we further define these sets for landmark Lj .

Set5j = LocationOf(Set1j ) (3.7)

Set6j = LocationOf(Set2j ) (3.8)

Set7j = LocationOf(Set3j ) (3.9)

Set8j = LocationOf(Set4j ) (3.10)

Finally, we also assign β values to the match between these sets to obtain the final equation for calculating

the conceptual nearness between two landmarks Li and Lj :

Cij =
8∑

y=1

βy
ij ∗ Size(Setyi

⋂
Setyj ) (3.11)

3.2.3 Temporal nearness

We go to work in the morning, have lunch around lunch time and return home in the evening. Each of us

has unique temporal patterns in our activities. In association to these activities, we visit different landmarks

at different times. Although the exact times that we go to work in the morning varies, we can still make

general observations like “I go to work around 9 in the morning”.

If we knew, for example, that a user goes to landmark Li at around 1 pm and to landmark Lj around 3

pm, we should display these two and other landmarks related to these in the map. In all likelihood, the user

will follow her routine and a map that displays the places she is expected to be next is certainly helpful.
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Landmarks that are visited within a time window, as in the example, are said to be temporally near to each

other. If landmarks Li and Lj are visited within a time window of 3 hours, then the temporal nearness

between them is higher than if they were visited within a time window of 5 hours - the less the time difference

between the visits of two landmarks, the greater the temporal nearness.

Temporal nearness in a sense is trying to predict the next landmark that will be visited by the user. It

also takes into account where the user has recently been. By finding temporal nearness between landmarks,

we are trying to model the evolving set of landmarks that are likely to be in a user’s mental model at different

times.

Suppose a user visits her office at 10 am, a coffee shop at 11 am and a library at 12 am. Although no

empirical study has been done to find out how much importance the user assigns to going to the coffee shop

versus going to the library, we make an assumption that the user assigns at least twice as much importance

to going to the coffee shop than going to the library. That is, we assume that temporal nearness is an inverse

function of the difference in time between the visits to the landmarks concerned. In the implementation

section, we choose the following non-linear function:

f(y) =
1

2 + y
(3.12)

Suppose the user visits the landmark Lj in a period of time, say a week, at times t1j , t2j ...t
x
j for a total

of x times. Let the current time and current location of the user be curT ime and Li respectively. We can

calculate the temporal nearness Tij between landmark Li and Lj at time curT ime to be

Tij = maxyf
(∣∣curT ime− tyj

∣∣) +

∑x
y=1 f

(∣∣curT ime− tyj
∣∣)

x
(3.13)

The first term above makes sure that the nearest landmark is given more consideration than those farther

away. Alternatively, we could have used weighting constants to weigh different time differences differently.

More details on how the temporal nearness is calculated from the raw GPS data can be found in the chapter

on implementation.

3.2.4 Social nearness

If a landmark is visited often by a friend or a family member then such landmark has some relevance to a

user even if the user has never been there. If the user happens to be in the vicinity of the landmark where
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her friend/family are currently located, then perhaps it is a good idea to show this landmark in a map.

A landmark Lj is said to be socially near another landmark Li if at time curT ime the user visits

landmark Li and a friend or family member of the user visits, has visited or is about to visit landmark Lj .

Put another way, social nearness is temporal nearness not of the user but of her friends and family. Let T 1
ij ,

T 2
ij ...T

x
ij , be the temporal nearness of x number of acquaintances of the user. The social nearness Aij (A

for acquaintances) between Li and Lj is proportional to each of these temporal nearness values. However,

each of these acquaintances will have different relationship with the user introducing the need for a weighing

constant γ. Thus,

Aij =
x∑

y=1

γyT y
ij (3.14)

In the interest of time, we simulate the GPS data for the acquaintances of the user without making

attempt to determine its correctness.

3.2.5 Putting it all together

In the preceding sections we calculated the spatial, conceptual, temporal and social nearness between two

landmarks Li and Lj to be Sij , Cij , Tij and Aij respectively. One way to find total nearness Nij , is just to

add these nearness-es together using weights W :

Nij = WsSij + WcCij + WtTij + WaAij (3.15)

The weights W have to be determined experimentally so that the total nearness is not unfairly skewed

by any of the nearness values. Alternatively, in some future version, it could be learned as described in the

next section.

As described in the section on landmarks, the number of landmarks displayed in the map is dependent

on the type of display. Suppose, the map displays x number of landmarks in total. Using the current time,

temporal nearness values are calculated for each landmark with respect to the current landmark. x number

of landmarks that have the highest temporal nearness values are chosen. With these landmarks as the basis,

spatial, conceptual and social nearness are calculated for each landmark. Then, x number of landmarks that

have the highest total nearness are chosen for display in the map.
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3.2.6 Accuracy in calculations

The nearness calculated above will not be cent percent accurate. Spatial calculations will be accurate but

rest of the nearness values will be approximations. Because of the very nature of conceptual nearness, there

will be a lot of room for ambiguity as described in the section on conceptual nearness. Temporal nearness

and social nearness will also be inaccurate because the GPS data collected might be inaccurate, the temporal

function, f , might be inaccurate or the model we have used for social nearness might be incorrect.

Despite all these sources of inaccuracy, the calculation of nearness is necessary if we are to find the right

landmarks to be displayed in a dynamic map. If the user is concerned with exclusion of a landmark, she can

always choose to display more landmarks in the map, making it more likely the map that she expects to see

will be displayed. Moreover, if due to some error a crucial landmark is not displayed, a user can consult the

map in the background (please refer to the screenshot for details) that includes all landmarks.

3.3 Learning components

This section describes possible learning components that could improve on the accuracy of nearness cal-

culations. The learning mechanisms presented in this section have been explored in the field of artificial

intelligence but due to lack of time, they are not implemented in this project.

In the previous section, we performed nearness calculations that allowed us to display different landmarks

in the map. However, there was no mechanism to check if the set of landmarks displayed in the map were

useful to the user. We will assume that upon display of certain landmarks in the map, if the user consequently

visits those landmarks then those landmarks were useful to the user.

Thus, algorithmically, we would want a system that would

1. Look at past behavior of the user and predict a set S of landmarks.

2. Look at current user behavior and see if the user goes to landmark L ε S. If yes, the predictions were

correct. Increase the nearness values between L and landmarks in S. Otherwise, the predictions were

incorrect so decrease the nearness values between L and landmarks in S.

3. Repeat steps 1 and 2 with the updated nearness values.

This method of giving rewards when predictions of a system are correct and discounting the predictions

when they are wrong are generally studied under the umbrella of re-enforcement learning [37]. By adjusting

the nearness value - either increasing them in the positive case or decreasing them in the negative case - we
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are basically traversing an error landscape to find the minima. A gradient search method as neural network

could be used for such a task.

Our final nearness function has four weight variables W :

Nij = WsSij + WcCij + WtTij + WaAij

We can adjust these weights so that upon many iterations, the map “learns” the correct nearness values

that will result in the set of landmarks that reflects user behavior.
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Chapter 4

Implementation

This section explains the implementation of the framework developed in the previous chapter. Since we

don’t intend myMap to be an end user product, the visual interface still needs a lot of polishing. The map

application is designed with couple of design requirements in mind:

1. Portability. The application should be portable across different computers and with a little bit of work

across devices.

2. Fun. The application should be fun to use.

3. Lowered expectation of accuracy. A sketch-based map ensures that the user’s expectation of spatial

accuracy is lowered.

4. Dynamic update. With no zoom or scroll feature, the user can not navigate around the map - the idea

is to have the map dynamically change in anticipation of user’s scroll or zoom.

As input, we provide

1. The user’s location information at different times. A sample of such information can be found in

section 6.1.1.

2. One to three paragraph of natural language text about each landmark from the web. A sample of such

information can be found in section 6.1.1.

3. Simulated data on the location of the user’s acquaintances at different times. This data is similar to

the one presented in 6.1.1.

4. Raw data on the location of different landmarks. An one time effort is needed to encode the relative

location of all landmarks that will be used in the project. This data can be found in section 6.1.3.
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Figure 4.1: Function f(y) = 1
2+y .

4.1 Implementation details

The general structure of the program can be found in section 6.2.1. First, temporal nearness is calculated

using the user’s location data, a sample of which can be found in section 6.1. The function f has the following

form as shown in figure 4.1.

If the user never visits a location within a time window, then the temporal nearness between that

landmark and the current landmark is zero. The temporal nearness between the user’s current location and

four landmarks - beckmanInstitute, bombayGrill, DCL and goldenWok - is shown in figure 4.2. One can

easily notice the periodic visit to DCL and since bombayGrill is never visited, its temporal nearness with

respect to all landmarks is zero. The calculations of temporal nearness is performed in the MapObjects

and ParseEvents classes.

A limited number of landmarks that have the highest temporal nearness to the current landmark is

selected for calculation of conceptual nearness values.

The calculation of conceptual nearness is described in section 3.2.2. First, the unstructured text of a

landmark is parsed to find all noun phrases. The result is stored in the first set. WordNet is used to find the

synonym, first, second and third order hyponyms. These results are stored in the second, third and fourth

sets. OMCS database is then used to find the LocationOf relations of the first four sets, resulting in four

new sets. An example of the content of the eight sets can be found in appendix section 6.2.2. The code for
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Figure 4.2: Temporal nearness of four landmarks at different times.

creating these eight lists is in class ListCreator.

Once these eight sets are created for each landmark, we compare identical-numbered sets of all landmarks

to find out how many of the terms match. Thus, we compare the first set of a landmark with the first set of

all landmarks, counting the number of direct keyword matches. The number of matches is then normalized

such that

1. A landmark compared to itself - a case of conceptual nearness with itself - should return a one.

2. The number of keywords in the raw data should not heavily influence the number of matches.

A sample of the final conceptual nearness values is given in appendix section 6.2.2. The number of

synonym and hyponyms generated from the first list determines the size of subsequent lists. However, as

can be seen from figures 4.3 and 4.4, the number of hyponyms does not seem to make major difference in the

value of conceptual nearness. The figures show the conceptual nearness of bombayGrill and beckmanInstitute

with other landmarks for different values of the maximum number of hyponyms and maximum number of

lemmas for each keyword. A lemma is a WordNet specific concept and refers to the hypernym of a hyponym.

Once all the nearness values have been added up to get the final nearness values as described in section

3.2.5, we display the landmarks with the highest nearness values. The number of landmarks that are finally

displayed is dependent on the display type and can easily be changed. The displaying of the landmark is

done by the GUI code base.
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Figure 4.3: Conceptual nearness value of bombayGrill for different values of maximum number of hyponyms
and maximum number of lemmas.

Figure 4.4: Conceptual nearness value of beckmanInstitute for different values of maximum number of hy-
ponyms and maximum number of lemmas.
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4.2 Graphic component

We started with a traditional map as our beginning point. It was used to locate the x and y position of the

27 landmarks given in table 6.1. The screen shot shown in 4.5 shows the first version of the program.

Upon subsequent redesigned, we decided to make following changes to the map:

• Use simple playful icons for landmarks. Since one of the objectives of the map was to make it playful,

we included simple icons that look like sketches for each landmark. There are a total of 11 landmarks

for the 27 landmarks.

• Include a background map in addition to the foreground landmarks shown. Since the foreground

landmarks don’t particularly impart location information visually to the user, we decided to incorporate

a background map so that the user will have a sense of the overall landscape.

• Drop support for scrolling or zooming in the map. We decided that as a dynamic map, the user

shouldn’t have to scroll to certain sections of the map to look at things important to her - the map

should do that for her. It remains to be seen if this feature will be well received by the user since most

users are already use to maps which allow for zoom and scroll.

The latest version are shown in figures 4.6 and 4.7. Figure 4.6 shows the map displaying five landmarks

at time 9:30 am. As time progresses, the context of the user slowly changes. The map changes dynamically

in response to 4.7.

4.3 Improvements

The scope of the project is massive and only a fraction could be achieved in the limited time. With more

time, the following improvement could be desirable for a project like this:

1. As briefly explained in the section on learning, 3.3, a future version could include some form of

reenforcement learning.

2. Instead of hand-coding the location of the user and simulating the GPS data of her acquaintances, we

could use GPS devices to collect the data and mine location information from the data. In such cases,

privacy issues become important and showing social nearness without giving away the exact location

of the user’s acquaintances will pose interesting challenges.
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Figure 4.5: Old version of the program.
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Figure 4.6: The map as displayed at time 9:30.
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Figure 4.7: The map as displayed at time 9:40 am.
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3. The interface of the map neither has zoom control nor slider functionality. Those were design choices

that were consciously made given that the nature of the map is dynamic. However, it remains to be

seen if such features are actually desirable in a project like this.

4. It will be nice to enable users to draw their own icons for landmarks since this increases the level of

participation of the users and even allows for sharing sketches of different landmarks at different places.

Moreover, since the user is the best person that understands the user’s own cognitive model, allowing

users to take control of the map reduces the cognitive load on the user and truly personalizes the map.

5. With a more revised version of the program, perhaps some user study could be done, incorporating

the feedback in an iterative design process.
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Chapter 5

User comments and Conclusion

5.1 User Comments

As explained in the introductory section, myMap wasn’t intended to be a full fledged end-user application.

The screen shots shown in section 4.2 thus should not be judged with the same scrutiny as those of other

projects which have a visual interface as their final product.

However, even with the shoddy user interface, the concept of a dynamically changing map that updates

itself according to time of day, a user’s habit and her social acquaintances excited many friends of the author.

No rigorous user study was done, but the author showed it to everybody at every opportunity. Many users

had difficulty in interpreting the visual interface and some even complained about the lack of zoom or scroll

feature. However, once they were explained that the map dynamically changes based on previously collected

GPS locations, they often used the term “cool”.

The author’s officemate was intrigued about the implication such a map would have for mobile devices

exclaiming that the idea was “ahead of its time”. Another friend explored the possibility of such ideas used

by big map companies as google who also are in the process of providing free wireless services. Location

and social information would be readily available to these companies and the ability to influence the user’s

choice would be greatly enhanced with the formulation of nearness given in this project.

Perhaps the most unexpected usage of myMap was when the author showed it to a group of friends in a

lab who were quarreling about which restaurant to go for lunch. The map, using the author’s GPS behavior

and sensing that it was lunch time showed a choice between Taco bell and Chipotle - which pretty much

ended the discussion since everybody decided Chipotle wouldn’t be a bad place to go. This showed that the

project had potential in social applications if it had enough knowledge about many people’s behavior.
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5.2 Conclusion

We started this project with the central research question - what is, if any, the theoretical foundation that

decides what a map should look like? In the section on cognitive maps, we decided that a map that resembles

the cognitive map of a human would reduce the cognitive load of a user. Furthermore, we concluded that

only those landmarks that are relevant to the user should be displayed in a map.

This requirement of displaying relevant landmarks coupled with fact that relevancy depends on changing

user context meant that the map displayed would be dynamic. We developed a theoretical framework for

calculating the relevancy of landmarks by introducing and developing the concept of nearness. We also

explored how commonsense research can be used to infer relationship between landmarks. Finally, we

developed a test platform to test the dynamically changing map and made suggestions for improvements.

Thus, this project was successful in answering its main research question by developing a tentative

theoretical framework of calculating nearness between different landmarks and using that to decide what a

map should look like - it should be a dynamic map that displays only those landmarks that are relevant to

a user’s context.
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Chapter 6

Appendix

6.1 Input Data

6.1.1 User location

A sample of user location at different times:

;; monday, feb 20:

2006:2:20:9:30::home

2006:2:20:13:00::tacoBell

2006:2:20:13:30::dcl

2006:2:20:15:45::engineeringHall

2006:2:20:17:15::IMPE

6.1.2 Landmark text from web

Part of text on a restaurant called Bombay Grill:

Bombay Indian Grill is the new Indian restaurant on Green Street, between 4th and 5th Streets.

It is a fresh new alternative for Basmati, the only other Indian place in town. Unlike the latter,

Bombay grill has some great dishes in their menu and very reasonably priced. However, only one

major downside – very poor service.

I already went there twice, once for lunch and then few days later for dinner. I almost had similar

experiences. Both the times they were extremely busy. However the staffs were very slow and

sometimes didn’t seem to know what they were doing. I have heard complaints from others that

some of the staff were rude. If I go next time I would try to avoid the busy lunch and dinner

hour.

For dinner, I started with some vegetable Pakoras. It was freshly cooked, soft but crisp. The

appetizer, drink and the main course almost arrived at the same time after some 30 minutes of
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wait. I also ordered some Mango Lassi(Mango+Yogurt drink). If you want to really taste the

Mango Lassi, ask it without ice. It is already chilled, the ice cubes just ruin the taste.

Part of text on an office building called Beckman Institute:

The Beckman Institute focuses on research in three main areas, Biological Intelligence, Human-

Computer Intelligent Interaction, and Molecular and Electronic Nanostructures. The Biological

Intelligence Center, known as BioIntel, primarily works in the fields of Neuroscience, Neurotech-

nology, and Cognitive Science. Combining researches from the Life Sciences, Engineering (espe-

cially Signal Processing), and other related field the BioIntel group focuses on research which

leads to a better understanding of brain functions, speech recognition, vision, and other sensory

information. Work from this the BioIntel center has lead to numerous advances not only in

the understanding of brain, but also in the development of algorithms for processing computer

vision and other sensor information, along with the development of many sensory devices used

in modern robotics.

The center for Human-Computer Intelligent Interaction, or HCII includes researchers from the

fields of Artificial Intelligence, Human Computer Interaction, and Psychology. Primary work

done by the center includes research in cognitive abilities of humans, and the construction of

hardware and software to suit human use.

6.1.3 Location of landmarks

Table 6.1 shows the different relative location of landmarks.

6.2 Calculations

6.2.1 Code Structure

Figure 6.2 shows the general structure of the code.

6.2.2 Eight sets from raw data

Table 6.3 and 6.4 shows parts of the eight sets needed for the calculation of conceptual nearness.

Table 6.5 shows the normalized conceptual nearness values of a few landmarks. Note that the conceptual

nearness value of a landmark with itself is unity.

51



Landmark Name X-Pos Y-Pos
assemblyHall 520 1640
beckmanInstitute 1060 100
bombayGrill 728 568
chipotle 860 520
CRCE 1400 980
dcl 1140 300
engineeringHall 1100 470
goldenWok 728 524
graingerLibrary 1080 380
home 540 160
illiniUnion 1080 600
IMPE 520 1280
jerusalem 956 468
jimmyJones 840 568
kenneyGym 1040 300
krannertCenter 1340 720
legends 760 500
mainLibrary 960 1000
murphysBar 920 500
seibelCenter 1220 240
sporlockMuseum 1480 760
springfieldPark 320 380
subwaySandwich 920 700
tacoBell 1480 80
tharaThai 660 520
wholersHall 940 1080
zas 920 568

Table 6.1: The relative location of all landmarks used in the project.
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Basic Code Structure
GUI

MapObjects
The nearness values of each landmark are gathered to
decide which landmarks to be displayed next.

LandmarkObject
Each landmark object is modeled by a LandmarkObject.
It stores all attributes of the landmark.

MapFrame
The map is displayed in a Java frame with separate layer
for displaying the sketch, background and time.

Conceptual
ListCreator

Creates the sets of lists described in the previous
chapter from raw data using WordNet and OMCS.

ListCompare
Compares the list generated by ListCreator to find
the number of mathces.

CompareLandmarks
This calculates the conceptual nearness between
all landmarks by invoking the two classes above.

Temporal
GenerateEvents

Simulates different location of the user’s friends
at different times.

ParseEvents
Parse the user’s location at different times
from input file.

Table 6.2: General code structure. Only the important classes/objects are shown.
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1st List 2nd List 3rd List 4th List
Bombay city Algonquian Abnaki
Indian metropolis Algonquin Algonkian
Grill urban center Anasazi Algonkin
restaurant Amerindian Athapaskan Arapaho
Green Native American Athapascan Arapahoe
Street restaurant Athabaskan Blackfoot
4th eating house bistro Cheyenne
5th eating place brasserie caff
Streets building prewpub cybercafe
a edifice cafe Fifth Avenue
alternative chromatic color coffeehouse Seventh Avenue
place chromatic colour coffee shop frontage road
in spectral color greenishness service road
town thoroughfare sea green wish
latter weekday sage green possible
grill blood group bottle green impossible
has blood type chrome green burial chamber
dishes decision making alley sepulcher
menu deciding alleyway sepulchre
one point back street crypt

Table 6.3: The first four of the eight lists created from the raw data of bombayGrill.

5th List 6th List 7th List 8th List
at at hotel in bus in store at state park
downtown in country in budapest in big city
in big city in county in city in cemetary
in building in disarray in large city in cemetery
at train station at at hotel in london in bank vault
in country downtown at airport in china shop
in countryside in big city at corner of two street in cupboard
in michigan in building downtown in kitchen cabinet
at neighbor ’s house in centre of town in behind row of buildings in kitchen
backyard in city in big city at dinner
in back yard in room in town in plane
in barbeque in town in city or town at grocery store
at resturant at end of line in france in bean can
in advertisement in plane at graveyard in bowl of chili
in application can in kitchen cubbard at apartment in can
in bar can in store at dinner at bar
at school in behind big building in cabinet at movie
in desk in cabinet in cubboard in jar
in oven in billfold in cupboard in refrigerator
on table in congress at work in bucket of chicken

Table 6.4: The last four of the eight lists created from the raw data of bombayGrill.
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Landmark Index assemblyHall beckmanInstitute bombayGrill chipotle CRCE
assemblyHall 1.000 0.238 0.170 0.211 0.306
beckmanInstitute 0.238 1.000 0.191 0.149 0.298
bombayGrill 0.170 0.191 1.000 0.458 0.241
chipotle 0.211 0.149 0.458 1.000 0.216
CRCE 0.306 0.298 0.241 0.216 1.000

Table 6.5: Normalized conceptual nearness values for a few landmarks.
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