
Relevance-aware Filtering of Tuples Sorted by an Attribute
Value via Direct Optimization of Search Quality Metrics

Nikita Spirin1, Mikhail Kuznetsov2, Julia Kiseleva3, Yaroslav Spirin4, Pavel Izhutov5

1UIUC, Urbana IL, USA; 2MIPT, Dolgoprudny, Russia; 3Eindhoven University of Technology, Eindhoven,
Netherlands; 4Datastars, Moscow, Russia; 5Stanford University, Palo Alto CA, USA

spirin2@illinois.edu1, mikhail.kuznecov@phystech.edu2, j.kiseleva@tue.nl3, izhutov@stanford.edu5

ABSTRACT
Sorting tuples by an attribute value is a common search sce-
nario and many search engines support such capabilities, e.g.
price-based sorting in e-commerce, time-based sorting on a
job or social media website. However, sorting purely by the
attribute value might lead to poor user experience because
the relevance is not taken into account. Hence, at the top of
the list the users might see irrelevant results. In this paper
we choose a different approach. Rather than just return-
ing the entire list of results sorted by the attribute value,
additionally we suggest doing the relevance-aware search re-
sults (post-)filtering. Following this approach, we develop
a new algorithm based on the dynamic programming that
directly optimizes a given search quality metric. It can be
seamlessly integrated as the final step of a query processing
pipeline and provides a theoretical guarantee on optimality.
We conduct a comprehensive evaluation of our algorithm on
synthetic data and real learning to rank data sets. Based
on the experimental results, we conclude that the proposed
algorithm is superior to typically used heuristics and has a
clear practical value for the search and related applications.

Keywords
Search Metric; Attribute; Filtering; Dynamic Programming

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering, Retrieval models, Search process, Selection process

1. INTRODUCTION
Many search engines support sorting of the search results

by an attribute value, e.g. sort items by price in e-commerce
or sort resumes by the update time on the job websites. A
similar scenario exists in the social domain when the goal is
to construct a chronologically sorted social feed, e.g. Twit-
ter, Facebook. However, sorting purely by the attribute
value might not be the best approach since at the top of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGIR’15, August 09 - 13, 2015, Santiago, Chile.
c© 2015 ACM. ISBN 978-1-4503-3621-5/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2766462.2767822.

list users might find irrelevant results. For example, see the
screenshots of the search user interfaces for Indeed.com and
Amazon.com on Figure 1. In both cases the results sorted
by the attribute values are hardly relevant for the queries.

To evaluate how such search scenarios are supported to-
day, we conducted the ad hoc evaluation of ten popular
search engines from the e-commerce and job industries1. For
each search engine we submitted 25 queries (different queries
for different industries), applied the sorting based on one of
the attributes (relevance, date, price), and judged the qual-
ity of results2. The ranking by relevance is of very high qual-
ity. The average Precision@10 is 0.86. On the other hand,
we found that the search results are far from relevant when
the attribute-based sorting is done. For instance, across the
sites the average Precision@1 is 0.44, Precision@5 is 0.45,
and 61% of queries have the Precision@10 below 0.5. We
think that it is mainly due to the relevance not being taken
into account when the attribute-based sorting is requested.
Therefore, our research questions are: (RQ1) Can the qual-
ity of results sorted by the attribute value be improved by
incorporating the relevance into the ranking process? (RQ2)
What is the best way to accomplish it?

In this paper we propose a new principled approach to per-
form relevance-aware search results (post-)filtering via direct
optimization of a given search quality metric. Our algorithm
uses the ideas from dynamic programming and is guaranteed
to deliver the optimal solution. The algorithm is presented
in Section 3. The experiments on synthetic and real learning
to rank (L2R) data sets are described in Section 4.

2. RELATED WORK
This work is related to the research on search user behav-

ior analysis, search metrics, and learning to rank. The pro-
posed algorithm is based on the dynamic programming [1].

Researchers studied the way people interact with search
engines by analyzing mouse movements, eye-tracking and
click logs. Joachims et al. [9] discovered the position bias
phenomenon, i.e. the results at the first two positions re-
ceive most attention, and then it quickly drops. Plus, on
average users tend to read the results in a linear order from
top to bottom. Craswell et al. [4] explored how the position
bias might arise and proposed four hypotheses and the cor-
responding probabilistic click models. They found that the
“cascade” model, where users view results from top to bot-
tom and leave as soon as they see a worthwhile document, is

1Amazon, Walmart, Target, Etsy, BestBuy, NewEgg for
products and Indeed, LinkedIn, SuperJob, Monster for jobs.
2we don’t describe the exact setup due to the page limit.

Figure 1: (A) Indeed.com resume search results for the query “product manager” sorted by “date” and (B)
Amazon.com search results for the query “bicycle” sorted by “price”. While sorting by relevance is accurate,
the results sorted by the attribute value are hardly relevant for the query, which leads to poor user experience.

the best explanation for position bias in early ranks. Dupret
et al. [5] generalized this model by allowing for the possibil-
ity that a user skips a document without examining it.

Complementary to the work on search models, a lot of at-
tention has been devoted to the design and analysis of search
metrics. Thus, in addition to the traditional metrics, like the
Precision and the Recall, Järvelin and Kekäläinen proposed
the (Normalized) Discounted Cumulative Gain (DCG) [8],
Chapelle et al. — the Expected Reciprocal Rank (ERR) [2],
to name just a few. Recently, Chuklin et al. [3] developed a
unified framework to convert any click model into the eval-
uation metric. Essentially, all search metrics model the po-
sition bias and penalize the top ranked irrelevant results.

Numerous ranking algorithms have been developed to ac-
curately predict the relevance of documents. Typically, these
algorithms are based on machine learning and find the op-
timal parameters by optimizing the “surrogate” objective
function. However, the solution to the approximation is not
always optimal for the original ranking problem. Therefore,
recently several approaches have been proposed that directly
optimize a given search metric. For instance, Xu et al. [12]
focus on the algorithms that optimize the objectives upper-
bounding the original non-smooth search metrics. Tan et
al. [11] proposed DirectRank, which is based on the itera-
tive coordinate ascent with the smart line search procedure.

Attribute-based ranking, however, has been handled very
differently. Rather than taking the relevance into account,
search engines return the list of results sorted by the at-
tribute value or suboptimal heuristics are used (Section 4.1).
Inspired by the recent advancements in L2R, in this work
we bridge the gap between the relevance-based ranking and
the attribute-based ranking by proposing to do relevance-
aware search results filtering, which directly optimizes a
given search metric, when the sorting by the attribute value
is requested. It is worth highlighting the difference between
the proposed algorithm and a famous TA algorithm by Fagin
et al. [6]. While TA algorithm finds the top-k most relevant
tuples by scoring them individually, we return the tuples,
which cumulatively optimize a given search quality metric.
The ordering of the tuples is as crucial as their relevance.

3. OUR APPROACH
We consider the scenario when a user requests the sorting

of the search results by the attribute value, e.g. by date (Fig-

ure 1, A) or by price (Figure 1, B). Our goal is to produce
the final ranking that both satisfies the strict ordering con-
straints and optimizes a given search quality metric (in turn
it minimizes the user’s effort on finding relevant results). We
only focus on the results filtering and assume that the rele-
vance scores are already predicted by the ranking algorithm.
Therefore, the formalization of our problem looks as follows.

Input: a list of tuples {(ti, ri)}li=1, where ti is the at-
tribute value and ri ∈ R+ is the relevance score predicted by
the ranking algorithm; a search quality metric Q.

Output: a (sub)list of indices J delivering the maximum
to the metric Q and totally ordered based on the attribute
value, i.e. J = arg maxQ(rji |ji ∈ J), s.t. tj1 < ... < tjl .

Throughout the paper, we consider the DCG as the search
quality metric (although ERR or other metric can be used),
date as the attribute, and the input sorted chronologically.
It is worth mentioning that the formalization above covers
the post-filtering scenarios as well, i.e. the input might con-
sist of tuples that passed some other filtering algorithm.

Currently, this problem is solved heuristically. Mainly
there are two approaches built around the same idea of
thresholding. We can take only the results that have the
relevance score above the threshold. We can also sort the
results by the relevance score, take the top-k elements, and
finally re-sort the list by date. While these approaches are
easy to implement, they have two major drawbacks. First, it
is not clear how to set the threshold. Second, the described
approaches are the approximate solutions of our problem.
Even the result set constructed from the top-k tuples sorted
by relevance, being re-sorted by the attribute value, gets
ordered randomly if we look at the relevance component.

The solution that guarantees optimality is to enumer-
ate all possible subsequences, compute the metric for each
one, and take the best one. However, this approach is not
tractable as the number of subsequences is exponential. We
propose a polynomial algorithm based on the dynamic pro-
gramming [1]. There are three key observations behind our
algorithm: (1) natural enumeration order for subsequences;
(2) additivity of the metric; (3) optimality of subproblems.

First, all subsequences can be partitioned into the factor
classes based on their length, i.e. in each factor class there
will be the subsequences of the same length. To enumerate
all subsequences, we can iterate over the factor classes and

Algorithm 1 (A1) Relevance-aware filtering of totally or-
dered set via direct optimization of a search quality metric

Input: DCG and {(ti, ri)}li=1, s.t. ti < ... < tl and ri ∈ R+
Output: J = arg maxDCG(rji |ji ∈ J), s.t. tj1 < ... < tjl
1: M ←Matrix(l + 1, l + 1);M(:, 0)← 0;M(0, :)← 0;
2: Path←Matrix(l+1, l+1); # to recover max sequence
3: for i in 1, . . . , l
4: for j in 1, . . . , i
5: gain← 2ri−1

log(j+1)
;

6: if M(i− 1, j − 1) + gain > M(i− 1, j)
7: M(i, j)←M(i− 1, j − 1) + gain;
8: Path(i, j)← (i− 1, j − 1);
9: else

10: M(i, j)←M(i− 1, j);
11: Path(i, j)← (i− 1, j);
12: (i, j)← arg maxM(l, :); # last element of solution
13: J ← List(); J.append(j);
14: while i > 1 and j > 1
15: if P (i, j).last < j
16: J.append(P (i, j).last);
17: (i, j)← P (i, j); # jump to shorter subsequence
18: return J.reverse()

within each factor class enumerate all subsequences. Sec-
ond, the search metrics are additive and can be computed
in linear time from the beginning of the list to the end [2].
It means that having a partial metric value for the prefix,
we can compute the new metric value by simply adding the
gain/utility provided by the current element. Third, the op-
timal subsequence for the prefix of length k is one of the
optimal subsequences from each of the factor classes for the
prefix of length k − 1 with or without the current element
appended (proof by induction for the prefix length).

Combining the observations above, we present our algo-
rithm and its analysis. It starts by initializing the memoiza-
tion matrix to store the optimal DCG values for subprob-
lems and the transition matrix to reconstruct the optimal
subsequence. Then, it iterates over the prefixes of the input
sequence in the outer loop and over the factor classes in the
inner loop. The cell (i, j) is for the optimal subsequence of
length j for the prefix of length i. At each step we decide
whether we should append the current element of the input
sequence i to the optimal subsequence of length j − 1 for
the prefix of length i− 1 (the recursion on lines 6-11). If we
append the current element, we go diagonal. If we don’t ap-

Figure 2: Dependencies in the memoization matrix,
a legal evaluation order, and the optimal path.

pend, we keep the existing optimal subsequence of length j
and stay on the same column. A legal evaluation order and
the dependencies between the cells are shown in Figure 2, A.
Finally, to reconstruct the optimal subsequence, we find the
maximum in the last row (the last element is always “in”
since the elements are non-negative) and go backwards in
the Path matrix. If the line is diagonal, we take the ele-
ment in the next cell. Otherwise, we skip. The Path matrix
is depicted in Figure 2, B. The complexity (both time and
space) of the algorithm is O(l2) because we have two nested
loops, costing us O(1) time at each iteration, and the square
memoization matrices. It is guaranteed to deliver the op-
timum because we “virtually” enumerate all subsequences
within the dynamic programming framework. For a toy ex-
ample problem {(0, 0), (1, 3), (2, 1), (3, 2), (4, 1), (5, 3))} the
optimal solution is {1, 3, 4, 5} with the DCG equal to 12.40.

4. EXPERIMENTS AND RESULTS
In this section we study how our approach contributes to

the ranking quality using two real LETOR [10] (MQ2007,
MSLR-WEB10K) and synthetically generated data sets.

4.1 Learning to Rank Data Sets
To answer our research questions, we do the simulations

using the real learning to rank data sets. We extend MQ2007
and MSLR-WEB10K data sets by assigning a random times-
tamp to each document to model the sorting by the attribute
value. Scikit-learn3 implementation of the Gradient Boosted
Regression Trees (GBRT) [7] is used to predict the relevance
scores. The optimal parameters for the final GBRT model
are picked using cross validation for each data set. We use
the 5-fold cross validation partitioning from LETOR [10].

Three popular baselines are considered, which are typi-
cally used to perform the filtering of the search results:
Baseline 1 (B1): sort by the attribute value, no filtering;
Baseline 2 (B2): sort by the attribute value, keep the re-
sults with the predicted relevance scores above the threshold
(we normalized the scores to [0,1] and set the threshold=0.5);
Baseline 3 (B3): sort results by the predicted relevance
score, take the top-k (where k is the cutoff point for the
metric value calculation), and re-sort by the attribute value.

The evaluation procedure works as follows. First, we train
the GBRT on the training folds. Second, we predict the rel-
evance scores using the trained GBRT model for the docu-
ments in the testing fold. Third, we apply a baseline filtering
algorithm to the documents in the testing fold by working
with the relevance scores from the step two and the ran-
domly generated timestamps. Fourth, we apply our filtering
algorithm to the tuples that passed the baseline filtering.
Finally, knowing the true relevance labels, we calculate the
NDCG@k for the filtered result list sorted by the times-
tamp. To make sure that the conclusions are not due to
randomness, we average the results from 1000 runs.

The results of the experiment are presented in Table 1
and 2. We can see that the output (post-)filtered with our
algorithm is regularly better than the baselines. We applied
the binomial test and found that almost all differences in the
NDCG values are statistically significant (marked in bold),
p-value is below 0.001. One average the increase in the met-
ric value is around 2-4%. Moreover, since the data sets used
have very different characteristics (e.g. the average query

3
http://scikit-learn.org/stable/index.html

NDCG @1 @5 @10 @20 @40
B1 only 0.226 0.245 0.273 0.336 0.496
A1 ◦ B1 0.299 0.287 0.304 0.363 0.511
B2 only 0.289 0.318 0.357 0.448 0.450
A1 ◦ B2 0.315 0.326 0.364 0.453 0.454
B3 only 0.433 0.417 0.418 0.451 0.498
A1 ◦ B3 0.433 0.417 0.420 0.455 0.512

Table 1: The demonstration of effectiveness of the
proposed approach on MQ2007 data set.

length for MQ2007 is 40 and for MSLR-WEB10K — 120),
the experiment suggests that the algorithm achieves good
performance for a wide range of input problems. Yet, one
should note that the increase in the ranking quality comes
with the extra computational cost because the complexity of
our algorithm is O(l

log l
) times larger than for the baselines.

4.2 Synthetic Data Sets
In this section we focus on the filtering only (both rele-

vance labels and timestamps are generated) and study how
the algorithm behavior changes for different input sizes and
relevance label distributions. We consider the following four
label distributions modeling the real situations: (a) uniform
integer in the range [0, 5]; (b) uniform real in the range [0, 5];

(c) power law, the slope α = 2.0; (d) 3x2

125
with the support in

the range [0, 5]. We generate the input lists for the filtering
algorithm by sampling from the corresponding distribution.
Similarly to the previous experiment, we simulate each com-
bination of conditions 1000 times and average the runs. Only
the Baseline 1 is used in this experiment for simplicity. The
data from the simulation is presented in Figure 3.

There are several observations that could be made with
the help of this figure. First, the output size is linearly pro-
portional to the input size (Figure 3, C). DCG also grows
linearly with the growth of the input size (Figure 3, A). Sec-
ond, the proposed algorithm always outperforms the Base-
line 1 (Figure 3, B), which is expected because we do the
filtering directly optimizing a given search quality metric.
Third, both the graph for the ratio of the DCG values and
the graph for the ratio of the output sequence lengths for the
proposed algorithm and the baseline monotonically converge
for the longer input lists (Figure 3, B and D). This means

Figure 3: The behavior of the algorithm (A1) for dif-
ferent input sizes and relevance label distributions.

NDCG @1 @5 @10 @20 @40
B1 only 0.131 0.161 0.190 0.236 0.309
A1 ◦ B1 0.173 0.183 0.208 0.250 0.321
B2 only 0.170 0.208 0.244 0.300 0.379
A1 ◦ B2 0.192 0.215 0.250 0.304 0.383
B3 only 0.390 0.362 0.365 0.380 0.418
A1 ◦ B3 0.390 0.362 0.366 0.382 0.421

Table 2: The demonstration of effectiveness of the
proposed approach on MSLR-WEB10K data set.

that our algorithm works better when the original hit list
is shorter. Fourth, higher gains in DCG over the baseline
are characteristic for the relevance label distributions, where
relevant results are more probable (Figure 3, B). The obser-
vations above are valid for non-degenerate cases, e.g. not all
labels are the same or sorted in a special order.

5. CONCLUSIONS AND FUTURE WORK
In this paper we addressed the important problem in search,

that is, how to increase the relevance of the search results
sorted by an attribute value. Our solution is based on the
idea to perform relevance-aware search results filtering by
directly optimizing a given search quality metric. We devel-
oped a simple, yet effective algorithm based on the dynamic
programming, which consistently outperforms typically used
heuristic approaches and is guaranteed to deliver the opti-
mal solution. In the future, we plan to integrate the pro-
posed algorithm in a real search engine and instrument an
A/B test to see how such a modification will affect the user
engagement and satisfaction with the search results.

6. ACKNOWLEDGEMENTS
We thank Karrie Karahalios, ChengXiang Zhai, and anony-

mous reviewers for their valuable comments and suggestions.

7. REFERENCES
[1] R. Bellman. Dynamic Programming. Dover Books on

Computer Science, USA, 2003.

[2] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan.
Expected reciprocal rank for graded relevance. CIKM’09.

[3] A. Chuklin, P. Serdyukov, and M. de Rijke. Click
model-based information retrieval metrics. SIGIR’13.

[4] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models. In
Proceedings of Web Search and Data Mining 2008.

[5] G. E. Dupret and B. Piwowarski. A user browsing model to
predict search engine click data from past observations. In
Proceedings of ACM SIGIR 2008.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In Proceedings of PODS ’01.

[7] J. H. Friedman. Greedy function approximation: A gradient
boosting machine. Annals of Statistics, 29(5), 2001.

[8] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4).

[9] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and
G. Gay. Accurately interpreting clickthrough data as
implicit feedback. SIGIR’05.

[10] T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A benchmark
collection for research on learning to rank for information
retrieval. Inf. Retr., 13(4).

[11] M. Tan, T. Xia, L. Guo, and S. Wang. Direct optimization
of ranking measures for learning to rank models. KDD’13.

[12] J. Xu, T.-Y. Liu, M. Lu, H. Li, and W.-Y. Ma. Directly
optimizing evaluation measures in L2R. SIGIR’08.

